a2 United States Patent

Haruki et al.

US009116741B2

US 9,116,741 B2
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

COMPUTER PROGRAM PRODUCT, AND
INFORMATION PROCESSING APPARATUS
AND METHOD

Inventors: Hiroyoshi Haruki, Kanagawa (JP);
Mikio Hashimoto, Kanagawa (JP);
Fukutomo Nakanishi, Tokyo (JP);
Ryotaro Hayashi, Kanagawa (JP); Yurie
Fujimatsu, Kanagawa (JP); Tomohide
Jokan, Kanagawa (JP); Takeshi
Kawabata, Tokyo (IP)

Assignee: Kabushiki Kaisha Toshiba, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 495 days.

Appl. No.: 13/585,941

Filed: Aug. 15,2012
Prior Publication Data
US 2013/0219408 Al Aug. 22,2013

Related U.S. Application Data

Continuation of application No. PCT/JP2010/052465,
filed on Feb. 18, 2010.

Int. Cl.
HO4L 9/00 (2006.01)
GO6F 11/00 (2006.01)
(Continued)
U.S. CL
CPC ..o GOG6F 9/461 (2013.01); GOGF 21/52

(2013.01)
Field of Classification Search

CPC ..o GO6Q 20/35765; GO6Q 20/3674;
GOG6F 3/062; GOGF 3/0622; GOGF 3/0637,
GOG6F 21/121; GOGF 9/461; GOGF 21/52
USPC ........ 726/26, 27,30, 711/100, 111, 147, 152,
711/163; 713/189, 193

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,473,690 A * 12/1995 Grimonprez etal. ........... 705/66
6,003,113 A * 12/1999 Hoshino .........cccccove.. 711/106

(Continued)

FOREIGN PATENT DOCUMENTS

JP 63-132334 A 6/1988
JP 2002-41168 A 2/2002

(Continued)
OTHER PUBLICATIONS

International Search Report mailed on Oct. 19, 2010, issued for
International Application No. PCT/JP2010/052465, filed Feb. 18,
2010 (with English translation).

(Continued)

Primary Examiner — Hosuk Song
(74) Attorney, Agent, or Firm — Oblon, McClelland, Maier
& Neustadt, L.L.P.

(57) ABSTRACT

According to an embodiment, a computer program product
includes a computer-readable medium including program,
when executed by a computer, to have a plurality of modules
run by the computer. The computer includes a memory having
a shared area, which is an area accessible to only those mod-
ules which run cooperatively and storing therein execution
moduleidentifiers. Each of the modules includes a first opera-
tion configured to store, just prior to a switchover of opera-
tions to an other module that runs cooperatively, an identifier
of the other module as the execution module identifier in the
shared area; and a second operation configured to execute,
when the execution module identifier stored in the shared area
matches with an identifier of own module immediately after a
switchover of operations from the other module, a function
inside the own module.

20 Claims, 40 Drawing Sheets

<110 120 <130 140
MODULE MODULE MODULE MODULE
(#1) (#2) 4
(Pro A) (Prg B) (Prg C) (Prg B)
180
oS | SYSTEM
SECURE PROCESSOR
<210 (220 HARDWARE
PROCESSOR CIPHER MANAGING UNIT 200
CORE 212 222 -~
280
CURRENT- KEY TABLE
TASK
IDENTIFIER 224 28 MEMORY
REGISTER
« »  CIPHER UNIT d
L = | 281
BUS




US 9,116,741 B2

Page 2
(51) Int.ClL FOREIGN PATENT DOCUMENTS
GO6F 9/16 (2006.01)
GO6F 21/52 (2013.01) JP 2005-166051 A 6/2005
JP 2005-196257 A 7/2005
. Jp 4115759 B2 4/2006
(56) References Cited P 2007-148962 A 6/2007
JP 2007-164595 A 6/2007
U.S. PATENT DOCUMENTS 1P 4226816 B2 12/2008
JP 4282472 B2 3/2009

6,983,460 B1* 1/2006 Goireetal. ..........coo.. 717/175

7,155,743 B2 12/2006 Goodman et al.

7,270,193 B2 9/2007 Hashimoto et al. OTHER PUBLICATIONS

7,299,363 B2  11/2007 Yamaguchi et al.

7,603,566 B2  10/2009 Hashimoto et al. International Written Opinion mailed on Oct. 19, 2010, issued for

7,657,760 B2 2/2010 Teramoto et al. International Application No. PCT/JP2010/052465, filed Feb. 16,

7,721,114 B2 5/2010 Yamaguchi et al. 2010.

*

ST90.195 B2+ 72014 Biancoetal e 12626 e Davidetal “Architectural Support for Copy and Tamper Resis-
2003/0126458 Al 7/2003 Teramoto et al. tant Software. Proceedlpgs (.)f ASPLOS 2000. Computer Systems
2005/0144438 Al 6/2005 Hashimoto et al. Laboratory, Stanford University, Stanford, CA, 94305 pp. 1-10.
2007/0136728 Al 6/2007 Saito . .

2007/0169068 Al  7/2007 Kanazawa et al. * cited by examiner



U.S. Patent Aug. 25, 2015 Sheet 1 of 40 US 9,116,741 B2

c110 120 130 140
MODULE MODULE MODULE MODULE
(#1) (#2) (#3) (#4)
(Prg A) (Prg B) (Prg C) (Prg B)
180
oS SYSTEM
SECURE PROCESSOR
<210 <220 HARDWARE
PROCESSOR CIPHER MANAGING UNIT 200
CORE 212 222 —~
| 280
CURRENT- » KEY TABLE ¢
TASK
IDENTIFIER ;:%'»224 026 MEMORY
REGISTER =
< » CIPHER UNIT | > 4
281
BUS
ID KEY VALUE | START ADDRESS | END ADDRESS
#1 ~— 222
#2
#3

#n




U.S. Patent Aug. 25, 2015 Sheet 2 of 40 US 9,116,741 B2
¢110 c120
MODULE (#1) MODULE (#2)
c119 c129
STACK (#1) STACK (#2)
g190
SHARED AREA
. »
110 280 ¢ 120
MODULE (#1) MEMORY MODULE (#2)
g111 §121
INITIALIZATION OPERATION _ J¢----1 oo e eenan] ¢-}--[INITIALIZATION OPERATION
UNIT +--wpee e »-- UNIT
4 112 106A 4 cioeB c122
POST- POST-
| SWITCHOVER SWITCHOVER| |
OPERATION [ A OPERATION
UNIT 3 . UNIT
A L) g181 ) A
Y S8 N v ¢ 128
SWITCHOVER]l | SECURE [ | [SWITCHOVER
PROGRAM PROGRAM
(#1) BODY HISTORY ) SHARED | HISTORY (#2) BODY
7 K x X
J C104A | S N <104B
PRE- PRE-
| ,|sWiITCHOVER|; *JSWITCHOVER |
OPERATION OPERATION
UNIT UNIT




U.S. Patent Aug. 25, 2015 Sheet 3 of 40 US 9,116,741 B2

FIG.5

280
u . 182
110 EXECUTION MODULE |—
MO%UL%(#U ] Sh startt ¢181-1 IDENTIFIER FIELD 183
rg _sta |
> Sh_mem1 SWITCHOVER FLAG FIELD
MODULE (#2) | '5°| Sh_endt .
(Prg B) SW|TCHOVEELPDARAMETER L
> — 1812 Fi
( 120 ) Sh_start2 185
MODULE #3) | '5° |ecceooaaaaaa SWITCHOVER SOURCE |~
O(Prg & > »| Sh_mem2 | | WODULE IDENTIFIER FIELD
Sh_end2/
140 Sh_start3
MO%%-EB)(M) L/ Sh_mem3
Sh_end3 rd
~ 181-3




U.S. Patent Aug. 25, 2015 Sheet 4 of 40 US 9,116,741 B2

FIG.6

SWITCHOVER REQUEST

v
«

<180 <110 <120
0s MODULE (#1) MODULE (#2)
START OF EXECUTION E R
¥ P <510 v <520
; INITIALIZATION INITIALIZATION
: OPERATION P OPERATION
; (APPLICATION SIDE) (LIBRARY SIDE)
| ¥ <ST1 !
| EXECUTION OF PROGRAM ;
: BODY :
Z v gS12 i
1 PRE-SWITCHOVER ;
! SWITCHOVER :
! REQUEST OPER:‘T'ON ;
{ RESUMPTION OF EXECUTION § 5821
: : POST-SWITCHOVER
5 ; OPERATION
; 5 v <522
5 ; EXECUTION OF CALLING
g ; DESTINATION
; ; $S23
: : PRE-SWITCHOVER
E i OPERATION

A

RESUMPTION OF EXECUTION v <513
POST-SWITCHOVER
OPERATION
<S14

RESUMPTION IN
EXECUTION OF PROGRAM
BODY




U.S. Patent Aug. 25, 2015 Sheet 5 of 40 US 9,116,741 B2

FIG.7

( START )

PERFORM AKE WITH COOPERATIVE-
OPERATION TARGET MODULE

S111-1

ESTABLISH SECURE SHARED AREA,
AND GENERATE MODULE SHARED
KEY

S111-2

DETERMINE MODULE IDENTIFIER OF
OWN MODULE, AND SHARE SECURE
SHARED AREA INFORMATION WITH

COOPERATIVE-OPERATION TARGET
MODULE

S111-3

WRITE SECURE SHARED AREA

INFORMATION IN KEY TABLE S111-4

WRITE MODULE IDENTIFIER OF OWN
MODULE IN SECURE SHARED AREA

EXECUTE PROGRAM BODY I ~ S$111-6

END

S111-5




U.S. Patent Aug. 25, 2015 Sheet 6 of 40 US 9,116,741 B2

FIG.8

( START ’

PERFORM AKE WITH COOPERATIVE-
OPERATION TARGET MODULE

S$121-1

DETERMINE MODULE IDENTIFIER OF
OWN MODULE, AND SHARE SECURE
SHARED AREA INFORMATION WITH
COOPERATIVE-OPERATION TARGET
MODULE

S121-2

WRITE SECURE SHARED AREA
INFORMATION IN KEY TABLE

SWITCH TO SLEEP STATE I'\/ S121-4

END

$121-3




U.S. Patent

Aug. 25, 2015 Sheet 7 of 40 US 9,116,741 B2
S104-1
WHAT IS ETURNIN
TYPE OF MODULE RETY S
SWITCH?
CALLING
¢ S104-2 v c S104-6

STORE CALLER ADDRESS IN
SWITCHOVER HISTORY AREA

C 5104-3

IN SWITCHOVER FLAG FIELD,
WRITE FLAG INDICATING CALLING

IN SWITCHOVER PARAMETER
FIELD, WRITE FUNCTION NAME
AND PARAMETER OF CALLING
DESTINATION

¢ S$104-5

OBTAIN SWITCHOVER SOURCE
MODULE IDENTIFIER FROM
SWITCHOVER HISTORY AREA,
AND THEN DELETE THAT
SWITCHOVER SOURCE MODULE
IDENTIFIER FROM SWITCHOVER
HISTORY AREA

¢ S104-7

IN SWITCHOVER FLAG FIELD,
WRITE FLAG INDICATING
RETURNING

IN SWITCHOVER SOURCE MODULE
IDENTIFIER FIELD, WRITE MODULE
IDENTIFIER OF OWN MODULE

»i
y

IN SWITCHOVER PARAMETER
FIELD, WRITE EXECUTION

RESULT

! cst40

IN EXECUTION MODULE
IDENTIFIER FIELD, WRITE MODULE
IDENTIFIER OF MODULE TO BE
RUN NEXT

c $104-10

SWITCH TO SLEEP STATE I

END




U.S. Patent Aug. 25,2015

Sheet 8 of 40

US 9,116,741 B2

FIG.10

OBTAIN EXECUTION MODULE
IDENTIFIER FROM SECURE
SHARED AREA

IS IDENTIFIER
THAT IS READ EQUAL TO

NO

$106-1

OWN MODULE
IDENTIFIER?

v gS1 06-9

OBTAIN SWITCHOVER FLAG
FROM SECURE SHARED AREA

WHAT IS

I SWITCH TO SLEEP STATE I

RETURNING

TYPE OF SWITCHOVER
FLAG?

JCALLI NG gS 106-5

v gS1 06-7

OBTAIN SWITCHOVER SOURCE
MODULE IDENTIFIER FROM
SECURE SHARED AREA, AND
STORE THAT SWITCHOVER
SOURCE MODULE IDENTIFIER IN
SWITCHOVER HISTORY AREA

gS106-6

OBTAIN CALLER ADDRESS
FROM SWITCHOVER HISTORY
AREA, AND THEN DELETE THAT
CALLER ADDRESS FROM
SWITCHOVER HISTORY AREA

OBTAIN CALLING DESTINATION
FUNCTION AND PARAMETER
FROM SWITCHOVER
PARAMETER FIELD, AND
IMPLEMENT CALLING
DESTINATION FUNCTION

OBTAIN EXECUTION RESULT
FROM SWITCHOVER

PARAMETER FIELD, AND
RETURN TO ABOVEMENTIONED
ADDRESS (AT LOCATION
IMMEDIATELY AFTER CALLING)

[ A

END



US 9,116,741 B2

Sheet 9 of 40

Aug. 25,2015

U.S. Patent

] ‘ | 1Tunsey |- 00 -] [ 0 S > ONINYNLIN|-- » ..........
w 1 [T 7 R U -- ..............
\# _ » .
| (Wppy || | Gans | les | | e | T ONITIVO|
- _ | €&
‘ ........... AT T T r » ..............................
L# w
gzl°  z# gLl° #  H3ILTAVMVA OVId  aQund (A Bid) (x Bid)
— _/ (Z#) (1)
' 3INAOW 371NAON
V3YV AHOLSIH YIAOHOLIMS VIV GIHVHS NIHLIM



U.S. Patent Aug. 25, 2015 Sheet 10 of 40
MODULE  MODULE  MODULE
#1) (#2) #3)

(Prg X) (Prg’Y) (Prg 2)

1 CALLING

+

CALLING

<

; RETURNING | C
| (@)

FIG.13
MODULE ~ MODULE = MODULE
(#1) (#2) (#3)

(Prg X) (Prgy) (Prg Z)

t
]
]
]
]
]

'

CALLING

% ]
¥ [Rerurume . <«

US 9,116,741 B2



U.S. Patent Aug. 25, 2015 Sheet 11 of 40

FIG.14
MODULE MODULE MODULE
(#1) #2) (#3)
(Prg X) (PrgY) (Prg 2)
> ’
i CALLING *

RETURNING . <«
| CALLING
* 1€
FIG.15
MODULE ~ MODULE  MODULE
(#1) (#2) (#3)
(Prg X) (Prg ) (Prg 2)
' 1«

* :

W
$ RETURNING§<—7

US 9,116,741 B2



U.S. Patent Aug. 25, 2015 Sheet 12 of 40 US 9,116,741 B2

FIG.16

CurlD MODULE  MODULE
WITHIN (#1) #2)
SHARED AREA  (Prg X) (Prg Y)
i SWITCHTO
#1 i SLEEP STATE
_____________ '21 r'd
Avy i *
|
—
i CALLING
§ |
#2 ; i
\ s z
CurlD MODULE MODULE  MODULE
WITHIN (#1) #2) #3)
SHARED AREA (Prg X) (Prgy) (Prg 2)
#1
5 :  SWITCHTO
5 i SLEEP STATE
4 5 5
>V CALLNG | ‘—" $
: E |
#2 i ! |
: |
s | !
‘ ' Y

v |



U.S. Patent Aug. 25, 2015 Sheet 13 of 40 US 9,116,741 B2
CurlD MODULE  MODULE  MODULE
WITHIN (#1) (#2) (#3)
SHARED AREA  (Prg X) (Prg Y) (Prg 2)
¥ caune ™
CALLING |
#1 > Y ;
3 Vo EXECUTION IN DIFFERENT
— SYSTEM, AND STORING
> ' OF INTERMEDIATE STATE
| CALLING * :
#2 § :
§ INSERTION OF
; MODULE IN
! INTERMEDIATE
v g STATE




U.S. Patent

Aug. 25, 2015 Sheet 14 of 40 US 9,116,741 B2
310 ¢ 320 <330 ¢ 340
MODULE MODULE MODULE MODULE
#1) (#2) (#3) (#4)
(Prg A) (Prg B) (Prg C) (Prg D)
<180
oS SYS;'EM
SECURE PROCESSOR RE
<410 <420 HARDWA
PROCESSOR MODULE SWITCH MANAGING 400
CORE 412 UNIT c422 |
MODULE SWITCH MANAGING
CU_?ESE}{\JT- TABLE
424
IDENTIFIER i g ¢ 280
REGISTER TABLE ACCESS CONTROL
UNIT MEMORY
430
i C 281
BUS
g422
MODULE | EXECUTION | SWITCHOVER |SWITCH-
ldx | SHARED MODULE  |SOURCE MODULE| OVER %ngm'g}’gg Vv
KEY IDENTIFIER |IDENTIFIER FIELD| FLAG
#1
#2
43

#n




U.S. Patent Aug. 25, 2015 Sheet 15 of 40 US 9,116,741 B2

FIG.21

g310 g280 g320
MODULE (#1) MEMORY MODULE (#2)
(APPLICATION MODULE ) (LIBRARY MODULE)
§311 g321
INITIALIZATION OPERATION [€-f--{€=-------~---- 44---1 INITIALIZATION OPERATION
UNIT T ------------- -t UNIT
¢ ¢ 112 C306A { 3068 ¢ 122
POST- POST-
L1 SWITCHOVER SWITCHOVER L_,
OPERATION OPERATION
UNIT UNIT
y 'y * ,471 o8 A
y g8 ¥ S
procran| | [FTSHOVER SWTCHOVER | lorograw
(#1) BODY AREA AREA (#2) BODY
h R
"'§304A 3048 M
PRE- PRE-
N SWITCHOVER SWITCHOVER e
OPERATION OPERATION
UNIT UNIT




U.S. Patent

START

FROM MODULE SWITCH
MANAGING TABLE, OBTAIN
VALUE OF VALID BIT
CORRESPONDING TO
SPECIFIED SHARED AREA
NUMBER

IS
VALID BIT EQUAL

Aug. 25,2015

NO

Sheet 16 of 40 US 9,116,741 B2

FIG.22

S424-1

TO "VALUE INDICATING
INVALIDITY"?

1S
SPECIFIED REQUEST
EQUAL TO WRITE
REQUEST?

YES - 5424-4

CHANGE VALID BIT TO
"VALUE INDICATING VALIDITY"

v ¢ 5424-7
FROM MODULE SWITCH
MANAGING TABLE, OBTAIN
VALUE IN MODULE SHARED
KEY FIELD CORRESPONDING
TO SPECIFIED SHARED AREA

NUMBER

IS SPECIFIED
KEY VALUE EQUAL TO
OBTAINED KEY
VALUE?

v € S424-6

PERFORM WRITING I

THROW
EXCEPTION

c S424-9

PERFORM SPECIFIED
WRITING

A

( END )



U.S. Patent

Aug. 25, 2015 Sheet 17 of 40 US 9,116,741 B2

FIG.23

( START )

PERFORM AKE WITH COOPERATIVE- $111-1
OPERATION TARGET MODULE

GENERATE MODULE SHARED KEY I\/ S311-2

SECURE FREE AREA IN MODULE S311-3
SWITCH MANAGING TABLE

SHARE SECURE SHARED AREA
INFORMATION AMONG APPLICATION/
ALL LIBRARIES

S311-4

EXECUTE PROGRAM BODY I'\f S111-6

END

FIG.24

( START )

PERFORM AKE WITH COOPERATIVE-
OPERATION TARGET MODULE

S121-1

SHARE COOPERATIVE OPERATION
INFORMATION AMONG APPLICATION/
ALL LIBRARIES

$321-2

SWITCH TO SLEEP STATE I’\/ S121-4

END




U.S. Patent

Aug. 25,2015

S5304-1

WHAT IS
TYPE OF MODULE

SWITCH?

Sheet 18 of 40 US 9,116,741 B2
RETURNING
v g8304-5
OBTAIN SWITCHOVER SOURCE

CALLING 5304-2

STORE CALLER ADDRESS IN
SWITCHOVER HISTORY AREA

5304-3

SPECIFY MODULE SHARED KEY, AND
WRITE FLAG INDICATING CALLING IN
SWITCHOVER FLAG FIELD

SPECIFY MODULE SHARED KEY, AND
WRITE FUNCTION NAME AND
PARAMETER OF CALLING
DESTINATION IN SWITCHOVER
PARAMETER FIELD

MODULE IDENTIFIER FROM
SWITCHOVER HISTORY AREA, AND
THEN DELETE THAT SWITCHOVER

SOURCE MODULE IDENTIFIER
FROM SWIT(,:A‘%%XER HISTORY

g8304-6

SPECIFY MODULE SHARED KEY,
AND WRITE FLAG INDICATING
RETURNING IN SWITCHOVER FLAG
FIELD

§S304-7

SPECIFY MODULE SHARED KEY,
AND WRITE EXECUTION RESULT IN
SWITCHOVER PARAMETER FIELD

v ¢5304-8

SPECIFY MODULE SHARED KEY, AND
WRITE MODULE IDENTIFIER OF OWN
MODULE IN SWITCHOVER SOURCE
MODULE IDENTIFIER FIELD

SPECIFY MODULE SHARED KEY, AND
WRITE, IN EXECUTION MODULE
IDENTIFIER FIELD, MODULE
IDENTIFIER OF MODULE TO BE RUN
NEXT

g8304—10

SWITCH TO SLEEP STATE

END



U.S. Patent Aug. 25,2015

Sheet 19 of 40 US 9,116,741 B2

SPECIFY MODULE SHARED KEY,
AND OBTAIN EXECUTION MODULE
IDENTIFIER OF MODULE SWITCH
MANAGING UNIT

IDENTIFIER THAT IS

NO

S$306-1

READ EQUAL TO MODULE
IDENTIFIER OF OWN
MODULE?

YES ¢S306-3

v §S306-9

OBTAIN SWITCHOVER FLAG FROM
SECURE SHARED AREA

WHAT DOES

SWITCH TO SLEEP STATE I

RETURNING

SWITCHOVER FLAG
INDICATE?

CALLING gS306-5

v gS306-7

SPECIFY MODULE SHARED KEY,
OBTAIN SWITCHOVER SOURCE
MODULE IDENTIFIER OF MODULE
SWITCH MANAGING UNIT, AND
STORE SWITCHOVER SOURCE
MODULE IDENTIFIER IN
SWITCHOVER HISTORY AREA

gS306-6

SPECIFY MODULE SHARED KEY,
OBTAIN CALLING DESTINATION
FUNCTION AND PARAMETER FROM
SWITCHOVER PARAMETER FIELD
OF MODULE SWITCH MANAGING
UNIT, AND IMPLEMENT CALLING
DESTINATION FUNCTION

OBTAIN CALLER ADDRESS FROM
SWITCHOVER HISTORY AREA, AND
THEN DELETE THAT CALLER
ADDRESS FROM SWITCHOVER
HISTORY AREA

SPECIFY MODULE SHARED KEY,
OBTAIN EXECUTION RESULT FROM
SWITCHOVER PARAMETER FIELD
OF MODULE SWITCH MANAGING
UNIT, AND RETURN TO
ABOVEMENTIONED ADDRESS
(AT LOCATION IMMEDIATELY AFTER
CALLING)

A

END



US 9,116,741 B2

Sheet 20 of 40

Aug. 25,2015

U.S. Patent

A3dVvHS) 319VL ONIOVYNVYIN HOLIMS 3TNAOW

LC Ol

4 4 4 4 4
A b} Vunsey (| e [ 1# | poseus ey red ONINYNLIY |-- » .......
w ....... AT A TTTTTTTTRTTTTTTT Y 7 S I A
L# ; — % .
ﬂr (1) JppY L G ‘gns lieo Z# paleys Asy| ONITIVO | |
# ...... AT, A TTTTTTTTTTAATTTTTTTT AT, U ... ............................
l - T L paleys™ Aoy
.............................................................................. NoIiIve3do |
X  \ A A A NOILVZITVILIN
0 w
ezL°  z# aLL” L A H3LIAVEVYd SY14  AIND AT (A Bid) (X B1d)
SN— 7 (z#) (1#)
N I1NAOW 3TNAOW
VIHVY ANOLSIH IAOHOLIMS (1L ¥IGNNN YIHY



US 9,116,741 B2

Sheet 21 of 40

Aug. 25,2015

U.S. Patent

omvv
IHUYMANVYH
A HOSS3D0Yd
W3LSAS IR,
JOHLINOD SS3D0V 319V.L
~ x
(A4 )
37av1
~1 ONIOVYNVYIN HOLIMS 31NAOW
— rAAL
00V LINN ONIOVNYWN HOLIMS 31NAON
0zp-
WA Q31snyl
Zso||Aso SO
qosL” vosl®  08l°
(g Bad) (D bad) (g 6.d) (v b1d)
(#) (e#) (z#) (1#)
37NAOW 371NAOW 37NAOW 37NAOW
ove- 0ge> oz oLe-




US 9,116,741 B2

Sheet 22 of 40

Aug. 25,2015

U.S. Patent

H31ANVH
NOILd3OX3 LVHL
Ol dANNr aNnod si
NOILJ3OX3 LNINILY3d
ONITANVYH 40 318VvdvO
S| LVHL ¥31ANVH
NOILd3OX3 NIHM

IWSINVHOIIN ONITANVH NOILdIOXI JOVNONY
008>
NOILd30X3
3JOVNONVY1 40
IONTHND0 %S M
3JINAOW ¥3TIVD |

OL N¥N13Y ‘aNNo4
1ON SI NOILd30X3
1N3INILH3d
ONITANVH
40 3719vdvO
SI LVH1 ¥3TANVH
NOILd30X3 dI

(e#) 3TINAON (Z#) 37NnAQON (1#) 37nAOW

6C Ol



U.S. Patent Aug. 25, 2015 Sheet 23 of 40 US 9,116,741 B2
510 520 <530 ¢ 540
MODULE MODULE MODULE MODULE
(#1) (#2) (#3) (#4)
(Prg A) (Prg B) (Prg C) (Prg B)
<180
OS SYSTEM
210 SECURE PROCESSOR 220 HARDWARE
PROCESSOR CIPHER MANAGING UNIT 200
CORE 212 222 ~
CURRENT- > KEYTABLE [~ 280
TASK
IDENTIFIER 904 2% MEMORY
REGISTER ¥
< » CIPHERUNIT e > 7
281
BUS



U.S. Patent

Aug. 25, 2015 Sheet 24 of 40

US 9,116,741 B2
510 280 ¢ 520
MODULE (#1) MEMORY | |MODULE ¢2)
111 121
INITIALIZATION OPERATION INITIALIZATION OPERATION
UNIT UNIT
v c112 C507A 5078 c122
EXCEPTION
EXCEPTION " _,l
““|RECEIVING UNIT } | RECEIVING
| C106A | i {1068
POST- \ / POST-
| switcHoveER L[\ {4 SWITCHOVER |
OPERATION UNIT[Y & /'l OPERATION UNIT
A "E \“‘ g181 II‘[' A A‘:
v <118 N v 128
SWITCHOVER SECURE SWITCHOVER
PROGRAM HISTORY SHARED HISTORY PROGRAM
(#1) BODY ARoR PR R (#2) BODY
/l‘l ‘ll’ ‘|\‘ r*l
¥ §104A ,,"; :4 '.‘ \“\‘ ! §104B
PRE- A0 PRE-
> SWITCHOVER [ |/ “—— ‘|'{ SWITCHOVER &
OPERATION UNIT] | P | | OPERATION UNIT]
v ¢505A ’;' ; ¥ \ v ¢505B
|| EXcEPTION f { ExcepTioN ||
NOTIFYING UNIT MOG%;LE NOTIFYING UNIT
Csa0



U.S. Patent Aug. 25, 2015 Sheet 25 of 40 US 9,116,741 B2

FIG.32

MODULE (#1) MODULE (#2) MODULE (#3)
510 520

M CALL

THROW MOCK

; LANGUAGE
EXCEPTION \,
THROW MOCK -4
il LANGUAGE
| || EXCEPTION ] OCCURRENCE
| | OF LANGUAGE
| | | EXCEPTION
|
| | |
| |
| I |
I |
' I
| | I |
| ] |
l A 4 | v l v
WZ e WZene WZne
Q022 0022 022
d
F22IH- 800A 220~ 8008 F85TH- 800C
Z0Z0 Z0%0 Z0Z0
NI RinEaT NI

|
|
|



U.S. Patent Aug. 25, 2015 Sheet 26 of 40 US 9,116,741 B2

FIG.33

( START )

OBTAIN SWITCHOVER SOURCE MODULE
IDENTIFIER FROM SWITCHOVER HISTORY
AREA, AND THEN DELETE THAT
SWITCHOVER SOURCE MODULE
IDENTIFIER FROM SWITCHOVER HISTORY
AREA

S5056-1

IN SWITCHOVER FLAG FIELD, WRITE FLAG
INDICATING EXCEPTION

S505-2

IN SWITCHOVER PARAMETER FIELD,

WRITE TYPE AND DATA OF EXCEPTION S505-3

IN EXECUTION MODULE IDENTIFIER FIELD,
WRITE MODULE IDENTIFIER OF MODULE
TO BE RUN NEXT

SWITCH TO SLEEP STATE I\' 5505-5

END

S505-4




U.S. Patent Aug. 25, 2015 Sheet 27 of 40 US 9,116,741 B2

FIG.34
( SsTART )

i
Y

Y

OBTAIN EXECUTION MODULE IDENTIFIER
FROM SECURE SHARED AREA

IS
IDENTIFIER THAT IS
READ EQUAL TO OWN MODULE
IDENTIFIER?

NO

S507-3 } S507-9

OBTAIN SWITCHOVER FLAG FROM WITCH TO SLEEP
SECURE SHARED AREA w
§S507-4

CONFIRM THAT SWITCHOVER FLAG
INDICATES "EXCEPTION"

S507-5

OBTAIN CALLER ADDRESS FROM
SWITCHOVER HISTORY AREA, AND THEN
DELETE THAT CALLER ADDRESS FROM
SWITCHOVER HISTORY AREA

g3507-6

OBTAIN TYPE AND DATA OF EXCEPTION
FROM SWITCHOVER PARAMETER FIELD,
AND THROW EXCEPTION USING THAT
INFORMATION

END



US 9,116,741 B2

Sheet 28 of 40

Aug. 25,2015

U.S. Patent

GEOId

t t t NOLLZoN
1d30X3
... [NOILVOIJILON] A 1
T d - Numﬂoxw ---1 Ox8® T L# - mll.v ZO_FQMOXN »
1 " A Y S A [
L NOILVOIJILON » "
4 --{ elegoxe |---4 oxe -] z# |--{ NOILd3OX3 | T} S
oov ' m
— SR N N S S— o
H olio s m :
(2) JppYy L# i’y Il c# ONITIVO b= "r
DR N Y Ul Wit _r ........................ f ......
\# “ :
- (Dappy|l--{ g'ans |---f 10 f-f z# |---ooeeeeee ' ONITIVO g
S S e Y . S— s W
- - L
c# 8z1o o 8LL> L# dI1INVEVYd  OVd akHnd (z B1g) (A B1g) (x B1d)
A / (e#) (Z#) (1#)
N IINAOW  ITNAOW I TNAOW
V3YVY AHOLSIH ¥YIAOHDLIMS V3V Q3HVHS NIHLIA



U.S. Patent Aug. 25, 2015 Sheet 29 of 40 US 9,116,741 B2

FIG.36

MODULE (#1) MODULE (#2) MODULE (#3)

[setimp]

STORE PC, SP,
ETC.

~

CALL

[longjmp]
FROM PC, SP
THAT WAS
STORED, RETURN
TO LLOCATION OF
setjmp
IMPLEMENTATION




U.S. Patent Aug. 25, 2015 Sheet 30 of 40 US 9,116,741 B2

FIG.37

€910 ¢ 280 ¢ 920
MODULE (#1) MEMORY | |MODULE (#2)
S‘111 g121
INITIALIZATION OPERATION INITIALIZATION OPERATION
UNIT UNIT
912 919 ycoo co2
CONTEXT CONTEXT
'?;?gggv >l MANAGING MANAGING | ?Q?Sgév
TABLE TABLE
A A
C907A ¢907B
CONTEXT
CONTEXT
<{ MODIFICATION Mgg&?\mg“ N
RECEIVING UNIT
UNIT
C906A ! * o068
POST- POST-
e SWITCHOVER | 4 SWITCHOVER P>
OPERATION UNIT]" A oPERATION UNIT]
A »‘ g181 AR L
908 ¥ gM8I y G128
SoNTERT SWITCHOVER SECURE SWITCHOVER
ONTES HISTORY SHARED HISTORY
REGIS AREA AREA | AREA
[} 1] A *
UNIT ] i . X A
J c104A | \ J 1048
gQOQA PRE- A R \ PRE- ¢ 9098
> SWITCHOVER | |/ T 1 SWITCHOVER |
CONTEXT|| loPERATION UNIT] || | operATION UNIT} || SN TRG
UNIT c905A | Pl L coosm UNIT
CONTEXT | CONTEXT
| MODIFICATION [ | | mopuLe ||| MODIFICATION [
NOTIFYING UNIT (#3) NOTIFYING UNIT
Cgap



U.S. Patent

Aug. 25,2015 Sheet 31 of 40 US 9,116,741 B2
CONTEXT
MODULE CONTEXT
IDENTIFIER NUMBER INFORMATION

(PC, SP, ETC))




US 9,116,741 B2

Sheet 32 of 40

Aug. 25,2015

U.S. Patent

6¢€ Ol

_ 1S3N03Y
; .-n 4 wgg [ T S R N peeees mm_.amo_ ..........
e " %
DY y S B W Y A [
_ L ENGER w m
- owg g n V-1 2# |----| “dwmbuo,  |-¥--f------------ boomeee
q -.v 1 m
‘ TR / S W o [
T o m m
= | ey e | | e » ONTVO g |
D p— m
A’ g N N w. ........................ w ......
Vi# e " % :
4 (1) 1PV [--1 ‘ggns fles -4 z# |--------eee- L i ONITIVO o=
‘ Y W Y U AN
- - Vit
CH# mmvv # mZ..m L# H3LANVEYd OVId aKnd (z Bid) (A Bid) (x B1d)
— _/ (c#) (z#) (L#)
YT 31NAOW 3ITNAOW  ITNAOW
v3dY AYOLSIH H3AOHOLIMS v3YVY GIUVHS NIHLIM



U.S. Patent Aug. 25, 2015 Sheet 33 of 40 US 9,116,741 B2

FIG.40

( START ’

OBTAIN CURRENT CONTEXT
INFORMATION

S908-1

REGISTER OBTAINED CONTEXT

INFORMATION AT SPECIFIED INDEX |~ S908-2

END



U.S. Patent Aug. 25,2015

Sheet 34 of 40

US 9,116,741 B2

FIG.41

OBTAIN EXECUTION MODULE
IDENTIFIER FROM SECURE SHARED

IDENTIFIER THAT IS NO

$106-1

READ EQUAL TO OWNMODULE
IDENTIFIER?

OBTAIN SWITCHOVER FLAG FROM
SECURE SHARED AREA

$106-4

$106-3

v 51069

SWITCH TO SLEEP STATE

RETURNING

WHAT IS TYPE OF
SWITCHOVER FLAG?

CALLING

OBTAIN SWITCHOVER SOURCE
MODULE IDENTIFIER FROM SECURE
SHARED AREA, AND STORE THAT
SWITCHOVER SOURCE MODULE
IDENTIFIER IN SWITCHOVER
HISTORY AREA

OBTAIN SWITCHOVER PARAMETERS
FROM SWITCHOE/LEEI’? PARAMETER
Fi

IS
INFORMATION TO BE
USED IN CONTEXT SETTING
INCLUDED?

IN CONTEXT MANAGING TABLE,
REGISTER MODULE IDENTIFIER,
CONTEXT NUMBER, AND CONTEXT
INFORMATION TO BE USED TO
RETURN TO CONTEXT MODIFICATION
NOTIFYING UNIT

$106-5

$106-6

v §S1 06-7

g8906—9

OBTAIN CALLING DESTINATION
FUNCTION AND PARAMETER FROM
SWITCHOVER PARAMETER FIELD,
AND IMPLEMENT CALLING
DESTINATION FUNCTION

OBTAIN CALLER ADDRESS FROM
SWITCHOVER HISTORY AREA, AND
THEN DELETE THAT CALLER
ADDRESS FROM SWITCHOVER
HISTORY AREA

OBTAIN EXECUTION RESULT FROM
SWITCHOVER PARAMETER FIELD,
AND RETURN TO ABOVEMENTIONED
ADDRESS (AT LOCATION
IMMEDIATELY AFTER CALLING




U.S. Patent Aug. 25, 2015 Sheet 35 of 40 US 9,116,741 B2

FIG.42

( START )

RETRIEVE CONTEXT INFORMATION
CORRESPONDING TO CONTEXT NUMBER
FROM CONTEXT MANAGING TABLE, AND

DELETE CONTEXT INFORMATION FROM
CONTEXT MANAGING TABLE AT SAME TIME

OVERWRITE CURRENT CONTEXT WITH
OBTAINED CONTEXT, AND PERFORM

CONTEXT SWITCHOVER S909-2

END

FIG.43

( START ’

OBTAIN SWITCHOVER SOURCE
MODULE IDENTIFIER FROM
SWITCHOVER HISTORY AREA, AND
THEN DELETE THAT SWITCHOVER
SOURCE MODULE IDENTIFIER FROM
SWITCHOVER HISTORY AREA

S905-1

IN SWITCHOVER FLAG FIELD, WRITE
FLAG INDICATING CONTEXT SETTING

$905-2

IN SWITCHOVER PARAMETER FIELD,
WRITE MODULE IDENTIFIER AND
CONTEXT NUMBER

S905-3

IN EXECUTION MODULE IDENTIFIER
FIELD, WRITE MODULE IDENTIFIER
OF MODULE TO BE RUN NEXT

SWITCH TO SLEEP STATE | ~ S905-5

END

S$905-4




U.S. Patent Aug. 25, 2015 Sheet 36 of 40 US 9,116,741 B2

FIG.44
(_ START )

o
X

Y

OBTAIN EXECUTION MODULE IDENTIFIER
FROM SECURE SHARED AREA

IDENTIFIER THAT 1S
READ EQUAL TO MODULE
IDENTIFIER OF OWN
MODULE?

cS907-3

NO

4 ¢S907-9

OBTAIN SWITCHOVER FLAG FROM
SECURE SHARED AREA

cS907-4

CONFIRM THAT SWITCHOVER FLAG
INDICATES "CONTEXT SETTING"

SPECIFY VALUES INCLUDED IN
SWITCHOVER PARAMETER FIELD, AND
RUN CONTEXT SETTING UNIT

END

SWITCH TO SLEEP
STATE




U.S. Patent Aug. 25, 2015 Sheet 37 of 40 US 9,116,741 B2

FI1G.45

¢ 710 ¢ 280 g720
MODULE (#1) MEMORY | |MODULE (#2)
111 121
INITIALIZATION OPERATION INITIALIZATION OPERATION
UNIT UNIT
v g712 §719 q729 g722
CONTEXT CONTEXT
PROGRAM Lyl \ i\ NAGING MANAGING € PROGRAM
(#1) BODY TABLE TABLE (#2) BODY
A A
C907A ¢9078
CONTEXT
CONTEXT
«| MODIFICATION MO o [
RECEIVING UNIT ONIT
c106A il * 1068
POST- POST-
| SWITCHOVER 4 SWITCHOVER P
OPERATION UNIT] " ‘| OPERATION UNIT]
y \ S \ c181 | 4% ¥
908 y ¢8| ¢ G128
T SWITCHOVER SECURE SWITCHOVER
ONIE2 HISTORY SHARED HISTORY
- AREA AREA AREA
TERING 7 4 . A
UNIT J c10aA AR j <1048
g702A PRE- /! : P . PRE- g?OZB
> SWITCHOVER [ |/ Do 1 SWITCHOVER €
CONTEXT ; P CONTEXT
UNIT coosA ] |y | cooss |UMNIT
CONTEXT |/ CONTEXT
> MODIFICATION f | | mMopbuLe ||| MODIFICATION [«
NOTIFYING UNIT #3) NOTIFYING UNIT

C 730



U.S. Patent Aug. 25, 2015 Sheet 38 of 40 US 9,116,741 B2

CONTEXT INI=C(())FIQ\II\.}IE¥|1£)N
NUMBER
(PC, SP, ETC.)
#1
#2
#3

#n




US 9,116,741 B2

Sheet 39 of 40

Aug. 25,2015

U.S. Patent

|||I|_ W

1

o [

#

(@) oyl #

L#

(1) PPy

=+

+

£#

8zLo )

V34V AHOLSIH ¥3AOHILIMS

V#

ENY]
4 owg |- A f--1 ¥ |- S kmrm_c_ wo_ ..........
— 3
il YAty S N m. ..............................
N e B e I e I === & 1 I o
--» ;
||||||||| I IR SR IPEPICEPSIRPIPRPRS SRR RPN S
A A A m m
i 180 e ONITIVO | :
-] "1 folieH | I L S ] 1> N eoeeeee
........ S s I R S
wig ‘L : » B v
o I e i e B pooeeee oz:._<o_Al
TR Il S’ S pr m, ..................
=[] [ -
H3LIWVHYd  OV1d amn) (z6id)  (ABid) (X Big)
N A (e (z) (L&)
N IJINAOW 3IINACW  FT1NAOW
YIYVY A3YVHS NIHLIM

Ly'Old



U.S. Patent Aug. 25, 2015 Sheet 40 of 40 US 9,116,741 B2

FI1G.48

S707-1

IS

MODULE IDENTIFIER
EQUAL TO OWN MODULE
IDENTIFIER?

NO

¢S707-2 vy §S707-4

RETRIEVE CONTEXT INFORMATION RETURN STACK TO STATE
CORRESPONDING TO CONTEXT NUMBER ATTAINED IMMEDIATELY
FROM CONTEXT MANAGING TABLE, AND AFTER SWITCHOVER, AND

DELETE CONTEXT INFORMATION FROM PROCEED TO PRE-
CONTEXT MANAGING TABLE AT SAME SWITCHOVER OPERATION
TIME

¢S707-3

OVERWRITE CURRENT CONTEXT WITH
OBTAINED CONTEXT, AND PERFORM
CONTEXT SWITCHOVER

END



US 9,116,741 B2

1

COMPUTER PROGRAM PRODUCT, AND
INFORMATION PROCESSING APPARATUS
AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application is a continuation of PCT international
application Ser. No. PCT/JP2010/052465 filed on Feb. 18,
2010 which designates the United States; the entire contents
of which are incorporated herein by reference.

FIELD

The embodiments relate to a technology that prevents
execution sequence of a plurality of modules from being
changed while the modules are running cooperatively.

BACKGROUND

In an open system, information is disclosed regarding the
hardware configuration of a computer or the source code of
the operating system (OS) of the computer. That enables a
user to change the operating programs so as to create desired
programs. Thus, in an open system, there is a possibility that
the programs ofthe OS are changed for the purpose of attack-
ing application programs. Such an attack by a third party is
difficult to prevent simply by beefing up the OS for preventing
the attack on application programs.

On the other hand, the hardware configuration is difficultto
alter by a user. There are proposed secure processors that are
configured to prevent an attack on programs, attempted by
means of altering the OS. In such secure processors; the
programs are encoded in a multitask environment along with
the information used in those programs, so as to prevent the
programs and the information from leaking to a third party or
to prevent the programs from being altered. As a result, the
process units generated in the programs can be executed in the
correct sequence.

Meanwhile, there are many applications that are config-
ured to include a plurality of modules running cooperatively.
In a secure processor, there may be a situation in which each
module only trusts a portion of another module. For example,
each module is encoded and secured with a different key; each
module runs in a different context; and each context is iso-
lated from the OS or from other modules. The data exchanged
among modules is not sent to potentially malcious OS or to
the modules that are not running cooperatively. In this model,
on the one hand, the private data within a particular module is
protected by isolating the context thereof from other mod-
ules; while on the other hand, a shared area is used to com-
municate data that is required when modules run coopera-
tively.

As an application having such a module configuration, it is
possible to think of a method of using shared libraries. In the
case of using multiprocessing, since each process operates in
an independent manner, it becomes necessary to have
description about synchronizing the operations among the
processes. Meanwhile, in an identical manner of creating a
stand-alone application, it is sufficient to write the shared
libraries according to the normal calling conventions. More-
over, since the operations are also performed in a sequential
manner, there is an advantage that the description does not get
difficult.

While using shared libraries in a secure processor, it is
necessary to verify whether or not the modules attempting to
run cooperatively are appropriate. There is a program for

10

15

20

25

30

35

40

45

50

55

60

65

2

calling shared libraries that verifies the validness of shared
libraries by performing authentication key exchange at the
time of initializing the shared libraries. Then, at the time of
calling a shared library, the program ensures that a particular
entry point in that shared library is executed. Meanwhile,
there is a technique in which verification of whether or not a
caller module and a calling destination module are valid is
performed using a key with which those modules are
decoded.

Meanwhile, each module holds a context independently,
and the execution control is managed by the OS. Hence, any
module can start running due to the execution control of the
OS. At that time, even a module that is waiting for being
called from another module may start running. In this way,
even if a particular module is waiting for being called from
another module, that particular module starts running due to
the execution control of the OS.

According to the techniques described above, although it is
possible to verify the validness of a calling destination mod-
ule, it cannot be determined whether or not the timing is right
for the module that has been called to start running. Thus,
when a plurality of modules run cooperatively, it becomes
possible to change the execution sequence of those modules.
That makes it difficult to ensure sequential running of mod-
ules in a fixed order such as in the case of shared libraries.

There is need to provide a program that can more reliably
prevent changes from being made in the execution sequence
by a third party.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1is a diagram illustrating a configuration of a system
that can be implemented in a first embodiment;

FIG. 2 is a diagram illustrating an exemplary data configu-
ration of a key table;

FIG. 3 is a diagram illustrating that a plurality of modules
is running in a secure processor;

FIG. 4 is a functional block diagram of a module configu-
ration according to the first embodiment;

FIG. 5 is a diagram illustrating a memory map of amemory
that has a secure shared area built therein;

FIG. 6 is a diagram illustrating the overall sequence of
operations performed to switch over among modules;

FIG. 7 is a flowchart for explaining an initialization opera-
tion performed by an application module;

FIG. 8 is a flowchart for explaining an initialization opera-
tion performed by a library module;

FIG. 9 is a flowchart for explaining a pre-switchover opera-
tion;

FIG. 10 is a flowchart for explaining a post-switchover
operation;

FIG. 11 is a diagram illustrating changes occurring in the
state of a secure shared area and in the states of switchover
history areas;

FIG. 12 is a diagram illustrating an example of a legitimate
execution sequence of a plurality of modules running coop-
eratively;

FIG. 13 is a diagram illustrating a first example of an
execution sequence attack;

FIG. 14 is a diagram illustrating a second example of the
execution sequence attack;

FIG. 15 is a diagram illustrating a third example of the
execution sequence attack;

FIG. 16 is a diagram illustrating an example in which the
first embodiment is applied to the first example of the execu-
tion sequence attack;



US 9,116,741 B2

3

FIG. 17 is a diagram illustrating an example in which the
first embodiment is applied to the second example of the
execution sequence attack;

FIG. 18 is a diagram illustrating an example in which the
first embodiment is applied to the third example of the execu-
tion sequence attack;

FIG. 19 is a diagram of a configuration of a system that can
be implemented in a second embodiment;

FIG. 20 is a diagram illustrating a data configuration of a
module switch managing table;

FIG. 21 is a functional block diagram of a module configu-
ration according to the second embodiment;

FIG. 22 is a flowchart for explaining operations performed
by a module switch managing unit;

FIG. 23 is a flowchart for explaining an initialization opera-
tion performed by the application module;

FIG. 24 is a flowchart for explaining an initialization opera-
tion performed by a library module;

FIG. 25 is a flowchart for explaining a pre-switchover
operation;

FIG. 26 is a flowchart for explaining a post-switchover
operation;

FIG. 27 is a diagram illustrating changes occurring in the
state of a secure shared area and in the states of switchover
history areas;

FIG. 28 is a diagram illustrating a configuration in which a
virtual machine monitor is used;

FIG. 29 is a diagram illustrating operations performed by a
language exception handing mechanism;

FIG. 30is a diagram illustrating a configuration of a system
that can be implemented in a third embodiment;

FIG. 31 is a functional block diagram of a module configu-
ration according to the third embodiment;

FIG. 32 is a diagram illustrating the handling of a language
exception according to the third embodiment;

FIG. 33 is a flowchart for explaining an exception notifying
operation according to the third embodiment;

FIG. 34 is a flowchart for explaining an exception receiving
operation according to the third embodiment;

FIG. 35 is a diagram illustrating changes occurring in the
state of a secure shared area and in the states of switchover
history areas;

FIG. 36 is a diagram illustrating an example of operations
performed using functions setjmp and longjmp;

FIG. 37 is a functional block diagram of a module configu-
ration according to a fourth embodiment;

FIG. 38 is a diagram illustrating a data configuration of a
context managing table;

FIG. 39 is a diagram illustrating changes occurring in the
state of a secure shared area and in the states of switchover
history areas;

FIG. 40 is a flowchart for explaining a context registering
operation according to the fourth embodiment;

FIG. 41 is an exemplary flowchart for explaining the post-
switchover operation;

FIG. 42 is a flowchart for explaining a context setting
operation;

FIG. 43 is a flowchart for explaining a context modification
notifying operation;

FIG. 44 is a flowchart for explaining a context modification
receiving operation;

FIG. 45 is a functional block diagram of a module configu-
ration according to a fifth embodiment;

FIG. 46 is a diagram illustrating an exemplary data con-
figuration of a context managing table;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 47 is a diagram illustrating changes occurring in the
state of a secure shared area and in the states of switchover
history areas; and

FIG. 48 is a flowchart for explaining a context setting
operation.

DETAILED DESCRIPTION

In an embodiment, a computer program product includes a
computer-readable medium including program, when
executed by a computer, to have a plurality of modules run by
the computer. The computer includes a memory having a
shared area, which is an area accessible to only those modules
which run cooperatively and storing therein execution mod-
ule identifiers which serve as identifiers of modules running
in an operation system (OS) from among the modules. Each
of the modules (a first module) includes a first operation
configured to store, just prior to a switchover of operations to
an other module (a second module) that runs cooperatively, an
identifier of the other module as the execution module iden-
tifier in the shared area; and a second operation configured to
execute, when the execution module identifier stored in the
shared area matches with an identifier of own module imme-
diately after a switchover of operations from the other mod-
ule, a function inside the own module.

First Embodiment

A first embodiment is explained below with reference to
the accompanying drawings. Firstly, the explanation is given
for an exemplary system that can be implemented in the first
embodiment. FIG. 1 is a schematic diagram of an exemplary
configuration of a system that can be implemented in the first
embodiment. In FIG. 1, an overall hardware configuration
and a system view are illustrated at the same time.

From the hardware perspective, a target system includes a
secure processor 200 and a memory 280 that are connected by
abus 281. The secure processor 200 includes a processor core
210 and an cipher managing unit 220. The processor core 210
represents the key component of the secure processor 200 and
controls the execution of various programs. The processor
core 210 includes a current-task identifier register 212 that is
used to store task identifiers of the modules being currently
executed in the processor core 210 (thus, referred to as current
task identifiers). The cipher managing unit 220 includes a key
table 222, a selector 224, and an cipher unit 226. The cipher
managing unit 220 operates in synchronization with an access
to the outside by the secure processor 200. Under the control
of the processor core 210, the selector 224 controls the feed-
ing of values, which are stored in the key table 222, to the
cipher unit 226.

In the target system, a stand-alone OS (operating system)
180 runs in the processor core 210 of the secure processor
200, and one or more modules run in the OS 180. In the
example illustrated in FIG. 1, a plurality of modules, namely,
amodule (#1) 110, a module (#2) 120, amodule (#3) 130, and
a module (#4) 140 are running. Each module running in the
OS 180 has a program from which that module is generated.
Moreover, each module has a task identifier as the value for
uniquely identifying that module in the processor core 210 of
the secure processor 200.

In the example illustrated in FIG. 1, it is indicated that the
module (#1) 110 has a task identifier “#1” and is generated
from a program A (Prg A). The module (#2) 120 has a task
identifier “#2” and is generated from a program B (Prg B).
The module (#3) 130 has a task identifier “#3” and is gener-
ated from a program C (Prg C). The module (#4) 140 has a



US 9,116,741 B2

5

task identifier “#4” and is generated from the program D (Prg
D). As is the case of the module (#2) and the module (#4), a
plurality of modules can be generated from a single program,
and a plurality of modules having the same origin may have
different task identifiers.

FIG. 2 illustrates an exemplary data configuration of the
key table 222. In the key table 222, with the task identifiers
serving as indices, n number of entries having indices (ID)
from “#1” to “#n” are written. Each entry contains a key value
field, a start address field, and an end address field. The key
value field is used to store a key that is required at the time of
encrypting or decrypting performed by the cipher unit 226.
The start address field and the end address field are used to
store the start address in the memory 280 and the end address
in the memory 280, respectively, of the data that is to be
encrypting or decrypting with the key stored in the key value
field.

The access to the key table 222 by the module (#1) 110 isto
the module (#4) 140 is controlled in such a way that each
module is able to access the entry corresponding only to the
task identifier of itself but is not able to access the entries
corresponding to the task identifiers of other modules. For
example, the control is performed in such a way that the
module (#1) 110 is able to access only the ID “#1” in the key
table 222, but cannot access the other IDs “#2” to “#n”.

Consider a case of writing a start address P, an end address
Q, and a key value K when a particular module (#m) is
running in the processor core 210. In this case, the secure
processor 200 refers to the current-task identifier register 212
in the processor core 210 and identifies the task identifier of
the module (#m) that is running in the processor core 210.
Then, with respect to an entry #m corresponding to the iden-
tified task identifier in the key table 222, the secure processor
200 writes the key value K, the start address P, and the end
address Q.

Given below is the explanation of a method by which the
module (#m) accesses data in the memory 280. The following
explanation is given for an example in which, of the entries in
the key table 222, a start address P, an end address Q, and akey
K are already registered for the ID “#m”, and the module (#m)
accesses data stored at an address X in the memory 280.

Atthe time when the module (#m) accesses the data stored
at the address X in the memory 280, the secure processor 200
obtains data D, corresponding to the address X from the
memory 280. Then, from the key table 222, the cipher man-
aging unit 220 obtains the key value corresponding to the task
identifier (#m) that is retrieved from the current-task identifier
register 212. If the address X to be read is located in between
the start address P and the end address Q specified in the key
table 222; the cipher managing unit 220 sends, to the proces-
sor core 210, a value that is obtained by decrypting the data D,
using the cipher unit 226. On the other hand, if the address X
to be read is not located in between the start address P and the
end address Q, the cipher managing unit 220 sends the data
D, back to the processor core 210.

In an identical manner, at the time when the module (#m)
writes data D, in the memory 280, if an address Y to be read
is located in between the start address P and the end address
Q; the secure processor 200 writes, in the memory 280, the
data obtained by encrypting the data D, using the key value K.
On the other hand, if the address Y to be read is not located in
between the start address P and the end address Q, the secure
processor 200 writes the data D, in the memory 280.

Herein, the explanation is given about the outline of a
module configuration when a plurality of modules runs coop-
eratively in the secure processor 200. Of the plurality of
modules running cooperatively in the secure processor 200,

25

30

35

40

45

50

55

60

65

6

each module is configured to only trust a portion of other
modules. Each module is protected by means of encrypting
with a different key, and runs in a different context. That is, the
context of each module is isolated from the OS or other
modules, and the data exchanged among modules is not sent
to potentially malicious OS or to the modules not operating
cooperatively.

FIG. 3 illustrates on a conceptual basis an exemplary mod-
ule configuration when a plurality of modules runs coopera-
tively in the secure processor 200. In the example illustrated
in FIG. 3, the module (#1) 110 and the module (#2) 120 hold
separate contexts, namely, a stack (#1) 119 and a stack (#2)
129, respectively, in such way that the contexts cannot be
viewed directly from other modules.

A shared area 190 is provided to enable communication of
data between the module (#1) 110 and the module (#2) 120.
That is, in the case of running a plurality of modules in the
secure processor 200, the context of each module is isolated
from other modules so that the private data in each module is
protected, and the data among the modules running coopera-
tively is communicated using the shared area 190.

FIG. 4 is a functional block diagram of an exemplary
module configuration according to the first embodiment.
With respect to the configuration illustrated in FIG. 4, the
secure processor 200 that is explained with reference to FIG.
1 is implemented in common. However, in FIG. 4, the secure
processor 200 is not illustrated.

In FIG. 4, it is illustrated that the module (#1) 110 as well
as the module (#2) 120 includes a module switch mechanism
according to the first embodiment. Herein, it is assumed that
the module (#1) 110 is an application module and the module
(#2) 120 is a library module. The module (#1) 110 and the
module (#2) 120 run cooperatively. Meanwhile, an applica-
tion module points to a module that executes the program
body after the initialization operation; and a library module
points to a module that waits for being called from another
module after the initialization operation.

The module (#1) 110 includes an initialization operation
unit 111, a program (#1) body 112, a pre-switchover opera-
tion unit 104 A, a post-switchover operation unit 106 A, and a
switchover history area 118. In an identical manner, the mod-
ule (#2) 120 includes an initialization operation unit 121, a
program (#2) body 122, and a switchover history area 128; as
well as includes a pre-switchover operation unit 104B and a
post-switchover operation unit 106B that respectively per-
form the same operations as the pre-switchover operation unit
104 A and the post-switchover operation unit 106 A. More-
over, a secure shared area 181 in the memory 280 is shared
between the module (#1) 110 and the module (#2) 120 that
run cooperatively. The secure shared area 181 is a part of the
shared area 190 that is shared between the module (#1) 110
and the module (#2) 120.

The initialization operation units 111 and 121 perform
operations to build the secure shared area 181 that is used by
the pre-switchover operation units 104 A and 104B and by the
post-switchover operation units 106 A and 106B. The pre-
switchover operation units 104A and 104B perform opera-
tions just prior to a switchover to another module.

The post-switchover operation units 106A and 106B per-
form operations immediately after a switchover to another
module. The switchover history arca 118 represents the area
that is used to store the information required by the pre-
switchover operation unit 104A and the post-switchover
operation unit 106A for returning due to a switchover. In an
identical manner, the switchover history area 128 represents
the area that is used to store the information required by the



US 9,116,741 B2

7

pre-switchover operation unit 104B and the post-switchover
operation unit 106B for returning due to a switchover.

The secure shared area 181 represents the area that is used
to store the information to be shared only among the module
(#1) 110 and the module (#2) 120 that run cooperatively. The
secure shared area 181 is configured in such a way that no
module other than the modules running cooperatively can
perform normal reading and writing with respect to the secure
shared area 181.

FIG. 5 illustrates an exemplary memory map of the
memory 280 that is used for the module switch mechanism
according to the first embodiment and that has the secure
shared area 181 built therein. For each set of modules running
cooperatively, the secure shared area 181 is built and shared.

In the example illustrated in FIG. 5, the module (#1) 110
and the module (#2) 120 running cooperatively share a secure
shared area 181-1 (Sh_mem1); while the module (#3) 130
and the module (#4) 140 running cooperatively share a secure
shared area 181-2 (Sh_mem?2). The secure shared arca 181-1
has the range starting from a start address Sh_start1 to an end
address Sh_endl in the memory 280. Similarly, the secure
shared area 181-2 has the range starting from a start address
Sh_start2 to an end address Sh_end2 in the memory 280.

Each secure shared area 181-1, 181-2, . . . contains an
execution module identifier field 182 for storing an execution
module identifier, contains a switchover flag field 183 for
storing a switchover flag, contains a switchover parameter
field 184 for storing a switchover parameter, and contains a
switchover source module identifier field 185 for storing a
switchover source module identifier. An execution module
identifier points to the module identifier of a module that runs
in the OS. A switchover source module identifier points to the
module identifier of a module that was running in the OS
before being switched to a module identified by the execution
module identifier. Meanwhile, module identifiers are values
that enable the modules running cooperatively to uniquely
identify each other.

As the module identifiers, it is possible to use the task
identifiers used in the secure processor 200. However, that is
not the only possible case. Alternatively, as the module iden-
tifiers, it is also possible to use values that enable the modules
running cooperatively to uniquely identify each other. A
switchover flag points to a value that indicates whether a
module switch has occurred due to calling of a module or due
to returning to the caller module. Regarding switchover
parameters, in the case of calling a module, switchover
parameters indicate the function name and the parameter of
the calling destination; and, in the case of returning to a
module, switchover parameters indicate the execution result.

Explained below is an example of the operations per-
formed by each module using a module switch function
according to the first embodiment. Herein, it is assumed that
the task identifiers are considered as the module identifiers.
Moreover, it is assumed that the module (#1) 110 is an appli-
cation module having a module identifier “#1” and being
generated from the program A; while the module (#2) 120 is
a library module having a module identifier “#2” and being
generated from the program B.

The following explanation is given for an example in which
the module (#1) 110 and the module (#2) 120 run coopera-
tively; the module (#2) 120 is called from the module (#1)
110; and the module (#2) 120 is later switched back to the
module (#1) 110.

FIG. 6 illustrates the overall sequence of operations per-
formed to switch over among the module (#1) 110 and the
module (#2) 120. The OS 180 starts running the module (#1)
110 and the module (#2) 120. Then, in the module (#1) 110

10

15

20

25

30

35

40

45

50

55

60

65

8

functioning as the application module, the initialization
operation unit 111 performs an initialization operation (Step
S10). Similarly, in the module (#2) 120 functioning as the
library module, the initialization operation unit 121 performs
an initialization operation (Step S20).

Once the initialization operations are completed, the mod-
ule (#2) 120 goes into a sleep state and waits for being called.
In the module (#1) 110, the program (#1) body 112 is
executed (Step S11).

Inthe program (#1) body 112 of the module (#1) 110; at the
time of calling the module (#2) 120, the pre-switchover
operation unit 104A performs a pre-switchover operation
with respect to the module (#1) 110 (Step S12). Then, a
switchover request is issued to the OS 180 from the module
(#1) 110. Upon receiving the switchover request, the OS 180
calls the module (#2) 120 and starts running it again. Thus, the
OS 180 makes the module (#2) 120 resume from the sleep
state. On the other hand, the module (#1) 110 goes into the
sleep state and waits for being called.

Once the module (#2) 120 is run again by the OS 180 to
resume from the sleep state, the post-switchover operation
unit 106B performs a post-switchover operation (Step S21).
Then, in the module (#2) 120, the calling destination, that is,
the program (#2) body 122 is executed at Step S22.

Inthe program (#2) body 122 of the module (#2) 120; at the
time of calling the module (#1) 110, the pre-switchover
operation unit 104B performs a pre-switchover operation
with respect to the module (#2) 120 (Step S23). Then, a
switchover request is issued to the OS 180 from the module
(#2) 120. Upon receiving the switchover request, the OS 180
calls the module (#1) 110 and starts running it. Thus, the OS
180 makes the module (#1) 110 resume from the sleep state.

Once the module (#1) 110 resume from the sleep state by
being called by the OS 180, the post-switchover operation
unit 106 A performs a post-switchover operation (Step S13).
Then, in the module (#1) 110, the program (#1) body 112 is
executed (Step S14).

In this way, in the first embodiment, for example, in the
module (#1) 110, after the initialization operation unit 111
performs an initialization operation, the execution of the pro-
gram (#1) body 112 starts. Moreover, in the module (#1) 110,
at the time of calling another module, the pre-switchover
operation unit 104A performs a pre-switchover operation.
Furthermore, when the module (#1) 110 is called by another
module, the post-switchover operation unit 106 A performs a
post-switchover operation, followed by the execution of the
program (#1) body 112.

Given below is the detailed explanation regarding the
operations illustrated in FIG. 6.

Firstly, the explanation is given for the initialization opera-
tion of modules. When the execution of the module (#1) 110
and the module (#2) 120 is started by the OS 180, the initial-
ization operation is performed by each of those modules so as
to enable the modules to run cooperatively. FIG. 7 is a flow-
chart for explaining an example of the initialization operation
performed by the application module. FIG. 8 is a flowchart for
explaining an example of the initialization operation per-
formed by the library module. The operations performed in
the application module as illustrated in FIG. 7 are performed
cooperatively with the operations performed in the library
module as illustrated in FIG. 8. The following explanation is
given with the focus on the flowchart illustrated in FIG. 7, and
the explanation with reference to the flowchart illustrated in
FIG. 8 is given when necessary.

Once the execution by the OS 180 starts, at Step S111-1
illustrated in FIG. 7 and at Step S121-1 illustrated in FIG. 8,
AKE (Authentication and Key Exchange) is performed



US 9,116,741 B2

9

among the module (#1) 110 and the module (#2) 120 attempt-
ing to run cooperatively. As a result of AKE, the module (#1)
110 and the module (#2) 120 verify the validness of each other
as well as share a temporary key Key_AB. In this way, by
performing AKE, the modules running cooperatively share
such a key that can be known only to the appropriate coop-
erative-operation target programs but cannot be known to
other modules.

Then, at Step S111-2, the module (#1) 110 secures an area
that is to be used as the secure shared area 181 in the memory
280, and generates a module shared key Key_shared. The
module shared key is shared among the modules running
cooperatively and is used in encrypting the secure shared area
181. As long as the module shared key has a value that cannot
be known to a module that is not running cooperatively, it
serves the purpose. That value of the module shared key can
be determined by the application module (in this example, the
module (#1) 110) or can be generated from random numbers.

Subsequently, at Step S111-3 and at Step S121-2 that is
illustrated in FIG. 8, the module (#1) 110 and the module (#2)
120 exchange secure shared area information that is used in
establishing, as the secure shared arca 181-1, the area secured
in the memory 280 by the module (#1) 110 at Step S111-2.
More particularly, firstly, the module (#1) 110 encodes the
secure shared area information as well as encodes the module
task identifier of itself with the temporary key Key_AB, and
sends the encoded data to the module (#2) 120 via the
memory 280.

Herein, the secure shared area information contains the
start address, the end address, and the module shared key of
the area secured in the memory 280 by the module (#1) 110 at
Step S111-2. In this example, to the module (#2) 120, the
module (#1) 110 sends, as the secure shared area information,
the start address Sh_startl, the end address Sh_end1, and the
module shared key Key_shared of the area secured in the
memory 280 at Step S111-2. Along with that, the module (#1)
110 sends the module identifier of itself (in the example, the
task identifier “#1”) to the module (#2) 120.

The module (#2) 120 uses the temporary key Key_AB to
decode the data received from the module (#1) 110, and
obtains the secure shared area information (the start address
Sh_startl, the end address Sh_end1, and the module shared
key Key_shared) as well as obtains the module identifier of
the module (#1) 110.

Besides, the module (#2) 120 refers to the task identifier of
itself and sets the module identifier of itself to “#2”, and then
encodes that module identifier with the temporary key
Key_AB. Then, the module (#2) 120 sends the data of the
encoded module identifier to the module (#1) 110 via the
memory 280. The module (#1) 110 can use the temporary key
Key_AB to decode the data received from the module (#2)
120 and can obtain the module identifier of the module (#2)
120 (in this case, the task identifier “#27).

As a result of the operations performed at Step S111-3
illustrated in FIG. 7 and at Step S121-2 illustrated in FIG. 8,
a specific memory area as well as a key for encrypting that
specific memory area can be shared among the modules run-
ning cooperatively, and module identifiers can be determined.
Each module identifier is a value that enables unique identi-
fication of a module from among the modules running coop-
eratively.

Then, at Step S111-4, the module (#1) 110 refers to the
secure shared area information and performs encrypting set-
tings with respect to the secure shared area 181-1. In parallel
to that, at Step S121-3 illustrated in FIG. 8, the module (#2)
120 refers to the secure shared area information and performs
encrypting settings with respect to the secure shared area

30

35

40

45

50

55

10
181-1. More particularly, with respect to the secure processor
200, the module (#1) 110 and the module (#2) 120 perform
encrypting settings by providing the start address Sh_startl,
the end address Sh_end1, and the module shared key Key_
shared of the secure shared area information.

Once encrypting settings in the secure processor 200 is
performed by the module (#1) 110 as well as by the module
(#2) 120, the secure processor 200 refers to the key table 222
and writes the start address, the end address, and the key value
in the entry corresponding to the current task identifier.

More particularly, as a result of the encrypting settings
performed by the module (#1) 110, the secure processor 200
writes the start address Sh_start1, the end address Sh_endl1,
and the module shared key Key_shared with respect to the
index “#1” corresponding to the module (#1) 110 in the key
table 222. In an identical manner, as a result of the encrypting
settings performed by the module (#2) 120, the secure pro-
cessor 200 writes the start address Sh_startl, the end address
Sh_end1, and the module shared key Key_shared with respect
to the index “#2” corresponding to the module (#1) 110 in the
key table 222.

With such settings, when the module (#1) 110 or the mod-
ule (#2) 120 writes a value in the area Sh_meml in the
memory 280, the secure processor 200 writes a value that is
encoded with the key Key_shared in the secure shared area
181. Moreover, when the module (#1) 110 or the module (#2)
120 reads a value from the area Sh_mem1 in the memory 280,
the secure processor 200 sends, to the processor core 210, the
value obtained by decrypting the data that is read from the
area Sh_mem1 with the key Key_shared.

Upon completing the writing of the secure shared area
information in the key table 222, in order to wait for being
called from the module (#1) 110, the module (#2) 120 stops
performing operations just prior to the operations at calling
destination (described later) and goes into the sleep state
(Step S121-4 illustrated in FIG. 8).

On the other hand, upon completing the writing of the
secure shared area information in the key table 222 at Step
S111-4, the module (#1) 110 writes the module identifier of
itself (in this case, the task identifier “#1”) as the execution
module identifier in the execution module identifier field 182
of'the secure shared area 181-1 at Step S111-5. Then, at Step
S111-6, the execution of the program (#1) body 112 starts in
the module (#1) 110.

In this way, in the first embodiment, the module (#1) 110 as
well as the module (#2) 120 performs encrypting settings
with respect to the same area in the memory 280 using the
same key. That enables the module (#1) 110 and the module
(#2) 120 to read plaintext values from that particular area.
However, the other modules that are not running coopera-
tively with the module (#1) 110 and the module (#2) 120 can
read only the encrypted values from that particular area. Thus,
the modules running cooperatively (in this case, the module
(#1) 110 and the module (#2) 120) can establish a secure
shared area in the area Sh_mem in the memory 280 in such a
way that the plaintext values in that secure shared area can be
accessed only by those modules running cooperatively.

Explained below with reference to FIG. 9 to FIG. 11 is an
operation of calling a module from another module. As
explained with reference to FIG. 6, at the time when a module
(caller module) calls another module (calling destination
module), the pre-switchover operation unit 104 A or the pre-
switchover operation unit 104B performs a pre-switchover
operation with respect to the caller module and then the
post-switchover operation unit 106 A or the post-switchover
operation unit 106B performs a post-switchover operation
with respect to the calling destination module.



US 9,116,741 B2

11

The following explanation is given for an example in which
the module (#1) 110 calls a function sub(5) written in the
program (#2) body 122 of the module (#2) 120. In the func-
tion sub(5), “sub” represents the function name and the
numerical value “5” written into the parenthesis represents
the parameter passed to the function sub( ).

FIG. 9 is a flowchart for explaining an example of the
pre-switchover operation. FIG. 10 is a flowchart for explain-
ing an example of the post-switchover operation. Regarding
the pre-switchover operation and the post-switchover opera-
tion, a calling operation in which the caller module calls the
calling destination module has different operation details
than a returning operation in which the calling destination
module calls the caller module and makes the caller module
resume from the sleep state.

FIG. 11 schematically illustrates an overview of the
changes occurring in the state of the secure shared area 181
and in the states of the switchover history areas 118 and 128
as a result of performing the calling operation and the return-
ing operation (described later). In FIG. 11, “ID”, “flag”, and
“parameter” specified in the secure shared area 181 respec-
tively represent the execution module identifiers, the switcho-
ver flags, and the switchover parameters. Immediately after
the initialization operation is performed as described above;
only an execution module identifier “#1”, which is written at
Step S111-5illustrated in FIG. 7, is stored in the secure shared
area 181. Moreover, no information is stored in the switcho-
ver history areas 118 and 128.

Firstly, the explanation is given regarding the calling
operation. In the module (#1) 110, just prior to calling the
module (#2) 120, the pre-switchover operation unit 104A
determines the type of module switch (Step S104-1). Herein,
it is determined that calling of a module is the reason for
module switch, and the system control proceeds to Step S104-
2. In order to ensure that, when making a return from the
calling destination module, the return occurs to the address of
the correct caller module; a caller address Addrl1 is stored in
the switchover history area 118 of the module (#1) 110.

Then, at Step S104-3, in the switchover flag field 183 of the
secure shared area 181, the pre-switchover operation unit
104 A writes a switchover flag “call” indicating that the reason
for module switch is “calling”.

Subsequently, at Step S104-4, in the switchover parameter
field 184, the pre-switchover operation unit 104 A writes the
function name “sub” and the corresponding parameter “5” of
the calling destination module as the calling information
required in module switch. Moreover, at Step S104-5, the
pre-switchover operation unit 104A writes the module iden-
tifier “#1” of itself in the switchover source module identifier
field 185.

Then, the system control proceeds to Step S104-9 that is
common to the calling operation and the returning operation.
In the execution module identifier field 182 of the secure
shared area 181, the pre-switchover operation unit 104A
writes the module identifier “#2” of the calling destination
module (in this example, the module (#2) 120). Subsequently,
the system control proceeds to Step S104-10, at which the
module (#1) 110 goes into the sleep state. With that, the
module (#1) 110 prepares itself for a case when it is made to
return from the calling destination module or prepares itself
for being called by another module. As far as going into the
sleep state is concerned, the module (#1) 110 stops perform-
ing operations just prior to the post-switchover operation.

When an execution module identifier is written in the
execution module identifier field 182, it can be reckoned that
the module running rights are transferred to the module iden-
tified by that execution module identifier. Hence, it is prefer-

15

20

25

40

45

50

55

12

able that the time period starting from the time of writing the
execution module identifier at Step S104-9 up to the time of
stopping module operations at Step S104-10 is shortened as
much as possible; and it is desirable to avoid an operation
related to the information protection resources of that module
during the particular time period.

Once the module (#1) 110 goes into the sleep state at Step
S104-10, the module running rights are switched over to the
OS 180. Then, because of a scheduler of the OS 180, the
module running rights are transferred to the module (#2) 120.
With that, the module (#2) 120 resumes running.

Once the module running rights are switched over, the
post-switchover operation is performed according to the
sequence illustrated in FIG. 10. When there is a change in the
running module from the module (#1) 110 to the module (#2)
120, the post-switchover operation unit 106B in the module
(#2) 120 obtains the execution module identifier from the
secure shared area 181 (Step S106-1). Then, it is determined
whether or not the value of the execution module identifier
that is obtained matches with the value of the module identi-
fier of the module (#2) 120 (Step S106-2).

At Step S106-2, if it is determined that the value of the
execution module identifier does not match with the value of
the module identifier of the module (#2) 120; the system
control proceeds to Step S106-9 indicating the sleep state, and
the state of the module (#2) 120 returns to the state just prior
to performing the calling operation. On the other hand, if it is
determined that the value of the execution module identifier
matches with the value of the module identifier of the module
(#2) 120, the system control proceeds to Step S106-3.

Inthis example, in the execution module identifier field 182
of the secure shared area 181, the module identifier “#2” is
written. Hence, it is determined that the value of the execution
module identifier matches with the module identifier of the
module (#2) 120. Consequently, the post-switchover opera-
tion unit 106B gets to know that the module (#2) 120 is to be
run. Thus, the system control proceeds to Step S106-3, and
the post-switchover operation is continued.

At Step S106-3, the post-switchover operation unit 106B
obtains the switchover flag from the switchover flag field 183
of the secure shared area 181. Then, at Step S106-4, it is
determined whether the value of the switchover flag that is
obtained indicates “calling” or “returning”. If it is determined
that the value of the switchover flag indicates “calling”, the
system control proceeds to Step S106-5. On the other hand, if
it is determined that the value of the switchover flag indicates
“returning”, the system control proceeds to Step S106-7.

In this example, as described above, at Step S104-3 illus-
trated in FIG. 9, the switchover flag “call” indicating “call-
ing” is written in the switchover flag field 183. Hence, it can
be seen that the value of the switchover flag is determined to
be indicating “calling” and that a function call is requested.
Consequently, the system control proceeds to Step S106-5.

At step S106-5, the post-switchover operation unit 106B
retrieves the switchover source module identifier from the
switchover source module identifier field 185 of the secure
shared area 181 and stores that switchover source module
identifier in the switchover history area 128 of the module
(#2)120. By storing in advance the module identifier indicat-
ing the switchover source module, the module (#2) 120 can
make the caller module return after the execution of the func-
tion.

In this example, as described above, at Step S104-5 illus-
trated in FIG. 9, the module identifier “#1” is written in the
switchover source module identifier field 185. Hence, that



US 9,116,741 B2

13

module identifier “#1” is retrieved as the switchover source
module identifier and is stored in the switchover history area
128.

Then, at Step S106-6, from the switchover parameter field
184 of the secure shared area 181, the post-switchover opera-
tion unit 106B obtains the function name “sub” and the
parameter “5” written as calling information. According to
the function name “sub” and the parameter “5”, the execution
of the function sub(5) in the program (#2) body 122 starts.

As illustrated in FIG. 11, at the point of time when the
calling operation is complete, in the secure shared area 181
are stored an execution module identifier “#2”, the switchover
flag “call”, and the switchover parameters “sub” and “5” that
are written during the pre-switchover operation at Step S104-
3, Step S104-4, and Step S104-9, respectively, illustrated in
FIG. 9. Moreover, in the switchover history area 118 of the
module (#1) 110, is stored the caller address Addrl that is
written at Step S104-2. Furthermore, in the switchover his-
tory area 128 of the module (#2) 120 is stored the module
identifier “#1” that is written during the post-switchover
operation at Step S106-5 illustrated in FIG. 10.

Given below is the explanation regarding the returning
operation. In this example, the operation is performed so that
the execution is returned from the module (#2) 120, which
functions as the calling destination module, to the module
(#1) 110, which functions as the caller module that had called
the module (#2) 120.

Just prior to making the return from the module (#2) 120 to
the caller module, the pre-switchover operation unit 104B of
the module (#2) 120 determines the type of module switch at
Step S104-1. Herein, itis determined that a module switch has
occurred due to a return to the caller module, and conse-
quently the system control proceeds to Step S104-6.

At Step S104-6, from the switchover history area 128, the
pre-switchover operation unit 104B obtains the module iden-
tifier “#1” that was stored at the time when the module (#2)
120 was called by the switchover source module (Step S106-5
illustrated in FIG. 9). Then, at Step S104-7, in the switchover
flag field 183 of the secure shared area 181, the pre-switcho-
ver operation unit 104B writes a switchover flag “ret” indi-
cating that the reason for module switch is “returning”. More-
over, at Step S104-8, in the switchover parameter field 184 of
the secure shared area 181, the pre-switchover operation unit
104B writes, as returning-from-calling information required
in the returning operation, an execution result Result_1 that is
the result of execution by the pre-switchover operation unit
104B.

The system control then proceeds to Step S104-9 and the
pre-switchover operation unit 104B writes the module iden-
tifier “#1” of the caller module (in this example, the module
(#1) 110) in the execution module identifier field 182 of the
secure shared area 181. Then, the system control proceeds to
Step S104-10 indicating the sleep state and the operations are
stopped just prior to the post-switchover operation.

Once the module (#2) 120 goes into the sleep state at Step
S104-10, the module running rights are switched over to the
OS 180. Then, because of the scheduler of the OS 180, the
module running rights are transferred to the module (#1) 110.
With that, the module (#1) 110 resumes running.

Once the module running rights are switched over, the
post-switchover operation is performed according to the
sequence illustrated in FIG. 10. When switchover of the run-
ning module occurs over from the module (#2) 120 to the
module (#1) 110, the post-switchover operation unit 106 A in
the module (#1) 110 obtains the execution module identifier
from the execution module identifier field 182 of the secure
shared area 181 (Step S106-1). Since the value of the execu-

25

40

45

14

tion module identifier matches with the module identifier of
the module (#1) 110, the post-switchover operation is contin-
ued (Step S106-2).

At Step S106-3, the post-switchover operation unit 106 A
obtains the switchover flag from the switchover flag field 183
of'the secure shared area 181. In this example, at Step S104-7
explained above with reference to FIG. 9, the switchover flag
“ret” written in the switchover flag field 183 is obtained.
Hence, it can be seen that the value of the switchover flag is
determined to be indicating “returning” (Step S106-4) and a
function call return is requested. Consequently, the system
control proceeds to Step S106-7.

At Step S106-7, from the switchover history area 118, the
post-switchover operation unit 106A obtains the caller
address Addrl stored at Step S104-2 described above, and
then deletes the caller address Addrl from the switchover
history area 118. Subsequently, at Step S106-8, the post-
switchover operation unit 106 A obtains the returning-from-
calling information from the switchover parameter field 184
of the secure shared area 181. Then, the module (#1) 110
refers to the execution result Result_1 specified in the return-
ing-from-calling information and resumes the execution by
returning to the caller address Addrl.

As illustrated in FIG. 11, at the point of time when the
calling operation is complete, in the secure shared area 181 is
stored the switchover flag “ret”, the switchover parameter
“Result_17, and the execution module identifier “#1” that are
written during the pre-switchover operation at Step S104-7,
Step S104-8, and Step S104-9, respectively, illustrated in
FIG. 9. Besides, in the switchover history area 118 of the
module (#1) 110, no information is stored as a result of
deleting the caller address Addrl during the post-switchover
operation at Step S106-7 illustrated in FIG. 10. In an identical
manner, in the switchover history area 128 of the module (#2)
120, no information is stored as a result of deleting the mod-
ule identifier of the caller module during the pre-switchover
operation at Step S104-6.

In this way, an area is secured that is accessible only by the
modules running cooperatively; and, just prior to the switcho-
ver of execution from the caller module to another module,
the module identifier of the calling destination module is
written in that area. Then, immediately after the switchover of
execution from the caller module to the calling destination
module, it becomes possible for the calling destination mod-
ule to ensure the appropriateness of the execution sequence
by comparing the module identifier of itself with the value of
the module identifier of the calling destination module writ-
ten in the abovementioned area. A specific example illustrat-
ing the case of ensuring the appropriateness of the execution
sequence is described later.

Explained below with reference to FIG. 12 to FIG. 18 is the
case of ensuring the appropriateness of the execution
sequence. Herein, it is assumed that three modules, namely, a
module #1 that functions as an application module and that is
based on a program X (Prg X); a module #2 that functions as
alibrary module and that is based on a programY (PrgY); and
a module #3 that functions as a library module and that is
based on a program Z (Prg Z), are run cooperatively. At that
time, the configuration is such that the module #1 calls the
module #2, and the module #3 calls the module #2.

FIG. 12 illustrates an example of a legitimate execution
sequence. When the modules #1 to #3 start running, the
module #2 and the module #3 put into the sleep state. At a
timing A, switchover of the running module occurs. That is,
the module #1 calls the module #2 and itself goes into the
sleep state. Then, at a timing B, switchover of the running
module occurs again. That is, the module #2 calls the module



US 9,116,741 B2

15

#3, and itself goes into the sleep state. Subsequently, at a
timing C, switchover of the running module occurs again.
That is, the module #3 makes the module #2 resume from the
sleep state, but itself goes into the sleep state.

Explained below with reference to FIG. 13 to FIG. 15 are
examples of execution sequence attacks made on the execu-
tion sequence illustrated in FIG. 12. Such execution sequence
attacks are usually made by changing the execution sequence
of modules by means of using or altering the OS or programs.

FIG. 13 illustrates a first example of the execution
sequence attack. In the first example, a module that has gone
into the sleep state is forced to run before being called by the
legitimate caller module. In FIG. 13, an attack is illustrated in
which the module #2, which is supposed to be called by the
module #1 at the timing A, is forced to run at a timing D that
is prior to the timing A using the scheduler of the OS. In that
case, at the timing A at which the module #1 calls the module
#2, the start portion of the module #2 is already executed. As
an example, if the start portion of the module #2 contains an
authentication operation, it becomes possible to execute the
remaining portion of the module #2 without performing
authentication. This first example is referred to as a timing
attack.

FIG. 14 illustrates a second example of the execution
sequence attack. In the second example, the module calling
sequence is changed from the legitimate sequence. In the
legitimate sequence illustrated in FIG. 12, the module #1 calls
the module #2, and the module #2 then calls the module #3. In
contrast, in FIG. 14, an attack is illustrated by which, at the
timing A at which the module #1 calls the module #2, the
module #3 is forced to run instead of the module #2. As an
example, if the configuration is such that the module #3 can
run after being authenticated by the module #2 by means of
the authentication operation, the attack forces the module #3
to run without authentication by the module #2. This second
example is referred to as a calling sequence attack.

FIG. 15 illustrates a third example of the execution
sequence attack. In the third example, the OS starts running in
advance amodule #5 and the module #2 that are different than
the module #1. Then, the OS calls the module #2 via the
module #5. For example, after executing only the beginning
portion of the module #2, the OS 180 returns the execution to
the module #5 while the module #2 is in an intermediate state.
Then, the module #2 goes into the sleep state. At that time, the
OS stores the intermediate state of the module #2. Later, at the
timing A, the module #2 in the intermediate state can be called
from the module #1. In this case too, if the beginning portion
of the module #2 contains an authentication operation, it
becomes possible to execute the remaining portion of the
module #2 without performing authentication. This third
example is referred to as an intermediate-state module insert-
ing attack.

Explained below with reference to FIG. 16 to FIG. 18 is the
examination of whether or not the first to third examples of the
execution sequence attacks described above can be avoided
by implementing the configuration according to the first
embodiment. In FIG. 16 to FIG. 18, “CurlD” within the
shared area represents the execution module identifier stored
in the secure shared area 181.

FIG. 16 illustrates an example in which the first embodi-
ment is applied to the first example, that is, to the timing attack
described with reference to FIG. 13. In this case, until the
module #2 is called from the module #1 at the timing A, the
secure shared area 181 is storing “#1” as the execution mod-
ule identifier that indicates the module #1. On the other hand,
when the module #2 resumes running from the sleep state, the
module #2 performs the post-switchover operation described

10

15

20

25

30

35

40

45

50

55

60

65

16

above and determines whether or not the module identifier of
itself matches with the execution module identifier stored in
the secure shared area 181 (Step S106-2 illustrated in FIG.
10).

If the module #2 is forced to resume running at the timing
D illustrated in FIG. 13, then the execution module identifier
stored in the secure shared area 181 has the value “#1” but the
module identifier of the module #2 has the value “#2”. Thus,
the two values are not matching. As a result, the system
control proceeds to Step S106-9 and the module #3 goes into
the sleep state. Hence, the timing attack is avoided.

FIG. 17 illustrates an example in which the first embodi-
ment is applied to the second example, that is, to the calling
sequence attack described with reference to FIG. 14. In this
case, the module #3 that is called from the module #1 has a
module identifier “#3”. However, in the secure shared area
181, the value “#2” is stored as the value of the execution
module identifier of the module that is supposed to be run next
at Step S104-9 illustrated in FIG. 9 during the pre-switchover
operation. Thus, during the post-switchover operation, at
Step S106-2 illustrated in FIG. 10, the module #3 determines
that the module identifier of itself does not match with the
execution module identifier stored in the secure shared area
181. As a result, the system control proceeds to Step S106-9
and the module #2 goes into the sleep state. Hence, the calling
sequence attack is avoided.

FIG. 18 illustrates an example in which the first embodi-
ment is applied to the third example, that is, to the interme-
diate-state module inserting attack described with reference
to FIG. 15. In this case, the module #2 and the module #5 are
initialized according to a different system than the running of
the module #1, and share a module shared key Key_shared_1.
On the other hand, the module #1 holds a module shared key
Key_shared 2 as a result of initialization. Thus, the module
shared key Key_shared_1 that is shared among the module #2
and the module #5 is not shared by the module #1. As a result,
when the module #2 is called from the module #1, the module
#2 reads the information stored in the secure shared area 181
in a non-plaintext condition.

In this way, since the module #1 and the module #2 cannot
share the information written in the secure shared area 181,
those modules cannot run cooperatively. Hence, a module
that is in an intermediate state can be avoided from being
inserted.

As described above, in the first embodiment, upon resum-
ing running, a module can perform the post-switchover
operation to determine whether or not the module identifier of
itself matches with the execution module identifier that is
stored in the secure shared area 181 and that indicates a
module which is supposed to be run. That makes it possible to
avoid execution sequence attacks.

Meanwhile, without deviating from the scope, various
modifications other than the abovementioned configuration
are also possible. For example, in the description given above,
the secure shared area 181 is established in the memory 280
that is connected to the secure processor 200 by the bus 281.
However, the memory 280 is only an exemplary memory
device that can be used. For example, as the secure shared
area 181, it is possible to use a cache memory installed in the
secure processor 200 or to use a nonvolatile memory such as
a flash memory. Moreover, the secure shared area 181 is not
limited to a semiconductor memory. Alternatively, for
example, it is also possible to use a hard disk.

In an identical manner, in the description given above, it is
explained that, during the initialization operation, the
exchange of AKE or secure shared area information is per-
formed using the memory 280. However, the memory 280 is



US 9,116,741 B2

17

only an exemplary memory device that can be used. Alterna-
tively, the exchange of AKFE or secure shared area information
can also be performed using a cache memory, a flash memory,
a hard disk, or the like.

In the description given above, it is explained that the
secure processor 200 includes only the processor core 210
and the cipher managing unit 220. However, that is not the
only possible case. Alternatively, for example, the secure
processor 200 can also include an internal memory and a
DMA (Direct Memory Access) controller. Moreover, in the
description given above, the key table 222 in the cipher man-
aging unit 220 is set in a dynamic manner. However, that is not
the only possible case. Alternatively, the keys can be created
in advance and be embedded in a nonvolatile memory area in
the secure processor 200.

In the first embodiment described above, AKE is started
from the application module. However, alternatively, AKE
can also be started from the library module.

Inthe firstembodiment described above, it is explained that
the initialization operation is performed at the start of running
of each module. However, that is not the only possible case.
That is, in the embodiment, performing the initialization
operation is not limited to the start of running a program. For
example, it is also possible to perform the initialization opera-
tionjust prior to the moment when the application module and
the library module run cooperatively. Moreover, until just
prior to the moment when the modules run cooperatively, the
initialization operation can be performed at any point of time.

In the first embodiment described above, the explanation is
given in which the number of library modules, which run
cooperatively with the application module, is limited to two to
three. However, that is not the only possible case. Alterna-
tively, the first embodiment is applicable even when four or
more library modules run cooperatively with the application
module.

Thus, the first embodiment is applicable in the following
cases: when the application module runs cooperatively with a
plurality of library modules; when a library module is called
from another library module; and when the application mod-
ule is called from a library module. In any one of those cases,
all modules can share the same key, and the secure shared area
can be built using that key. With that, four or more modules
become able to share the same secure shared area.

In the first embodiment described above, a single secure
shared area is secured for a single application module. How-
ever, alternatively, it is also possible to secure a plurality of
secure shared areas for a single application module. For
example, a particular module that runs cooperatively with the
application module can be sharing a secure shared area
Sh_mem3 with the application module; while another mod-
ule that runs cooperatively with the application module can be
sharing a secure shared area Sh_memd4 with the application
module. Moreover, when the module #1, the module #2, and
the module #3 run cooperatively; the module #1 and the
module #2 can have a separate secure share area therebe-
tween, the module #2 and the module #3 can have a separate
secure share area therebetween, and the module #1 and the
module #3 can have a separate secure share area therebe-
tween.

Inthe firstembodiment described above, it is explained that
the cipher managing unit 220 is configured as an independent
constituent element. However, that is not the only possible
case. Alternatively, for example the cipher managing unit 220
can also be incorporated in a constituent element such as a
BIU (Bus Interface Unit) or a DMA controller that accesses
the outside of the processor.

10

15

20

25

30

35

40

45

50

55

60

65

18

In the first embodiment described above, a data encrypting
mechanism of the secure processor 200 is used in building the
secure shared area 181 that is accessible only by the modules
running cooperatively. However, that is not the only possible
case. Alternatively, as long as it is possible to take the support
of'the secure processor 200 and build an area that is accessible
only by the modules running cooperatively, any other method
other than using the data encrypting mechanism can be imple-
mented to build the secure shared area.

In the first embodiment described above, the switchover of
modules is performed by taking the support of the OS 180.
However, that is not the only possible case. Alternatively, for
example, the embodiment is also applicable when the hard-
ware mechanism is used to perform the switchover of mod-
ules in a direct manner (see Japanese Patent No. 4226816).

In the first embodiment described above, the switchover
history areas 118 and 128 are managed as independent data
areas. However, that is not the only possible case. That is, the
switchover history arecas 118 and 128 need not necessarily
have independent configurations. Alternatively, the switcho-
ver history areas 118 and 128 can be configured to be incor-
porated in the stack included in each module.

In the first embodiment described above, task identifiers
are considered as the module identifiers. However, that is not
the only possible case. That is, as long as the module identi-
fiers are unique values among the modules running coopera-
tively, other values can also be used. For example, each mod-
ule can have a module identifier generated from random
numbers. Moreover, a case can also be considered in which
the secure processor 200 has a plurality of processors, each of
which having a unique identifier assigned thereto. In that
case, each module can have a module identifier generated as
a value by combining a core identifier, which is used in
identifying the processor core, and a task identifier. Still alter-
natively, a method can be implemented by which, depending
on an agreement between the modules running cooperatively,
only one of the modules uses the task identifier as the module
identifier and the other module uses a value generated from
random numbers as the module identifier.

Second Embodiment

Given below is the explanation of a second embodiment
according to the embodiment. In the first embodiment
described above, the secure shared area 181, with respect to
which reading and writing can be performed only by the
modules running cooperatively, is built in an area of the
memory 280. In contrast, in the second embodiment, a secure
shared area is configured as hardware in a secure processor.

FIG. 19 is a schematic diagram of an exemplary configu-
ration of a system that can be implemented in the second
embodiment. In FIG. 19, an overall hardware configuration
and a system view are illustrated at the same time. Mean-
while, in the description with reference to FIG. 19, the con-
stituent elements identical to those illustrated in FIG. 1 are
referred to by the same reference numerals and the explana-
tion thereof is not repeated.

As illustrated in FIG. 19, according to the second embodi-
ment, a secure processor 400 includes a processor core 410, a
BIU 430, and a module switch managing unit 420. In addi-
tion, the module switch managing unit 420 includes a module
switch managing table 422 and a table access control unit
424.

The table access control unit 424 determines whether or
not the processor core 410 is to be allowed to access the
module switch managing table 422. If the access is not to be
allowed, the table access control unit 424 throws an excep-



US 9,116,741 B2

19
tion. The BIU 430 is connected to the external bus 281 and
serves as a bus interface unit for establishing a connection
from the inside of the secure processor 400 with the bus 281.
The processor core 410 is connected to the bus 281 via the
BIU 430 and, for example, is capable of accessing the
memory 280.

Meanwhile, in contrast to the secure processor 200 accord-
ing to the first embodiment described above, the secure pro-
cessor 400 according to the second embodiment does not hold
akey table or does not include an cipher managing unit having
an cipher unit.

FIG. 20 illustrates an exemplary data configuration of the
module switch managing table 422. In the module switch
managing table 422, with shared area numbers serving as
indices, n number of entries having indices (Idx) from “#1” to
“#n” are written. Each entry contains a module shared key
value field, an execution module identifier field, a switchover
source module identifier field, a switchover flag field, a
switchover parameter field, and a valid bit. In FIG. 20, the
valid bit is expressed as “V”’. Of these contents of each entry,
the execution module identifier field, the switchover source
module identifier field, the switchover flag field, and the
switchover parameter field are identical to the fields having
the same names in the secure shared area 181 explained
earlier with reference to FIG. 5.

The module shared key value field is used to store a value
that can be known only to those modules which can access the
module shared key value field. The valid bit represents the
flag indicating whether a particular entry is valid or invalid.

FIG. 21 is a functional block diagram of an exemplary
module configuration according to the second embodiment.
In the description with reference to FIG. 21, the constituent
elements identical to those illustrated in FIG. 4 are referred to
by the same reference numerals and the explanation thereofis
not repeated.

As illustrated in FIG. 21, a module (#1) 310 functioning as
an application module includes an initialization operation
unit 311, the program (#1) body 112, a pre-switchover opera-
tion unit 304 A, a post-switchover operation unit 306A, and
the switchover history area 118. Moreover, a module (#2) 320
functioning as a library module includes an initialization
operation unit 321, the program (#2) body 122, and the
switchover history area 128; as well as includes a pre-
switchover operation unit 304B and a post-switchover opera-
tion unit 306B that respectively perform the same operations
as the pre-switchover operation unit 304A and the post-
switchover operation unit 306 A of the module (#1) 310.

Herein, in contrast to the first embodiment, in the memory
280 according to the second embodiment, no secure shared
area is established that could be shared by the module (#1)
310 and the module (#2) 320.

Explained below is an example of the operations per-
formed by each module using a module switch function
according to the second embodiment. Herein, it is assumed
that the task identifiers are considered as the module identi-
fiers. Moreover, it is assumed that the module (#1) 310 is an
application module having a module identifier “#1”” and being
generated from the program A; while the module (#2) 320 is
a library module having a module identifier “#2” and being
generated from the program B.

The following explanation is given for an example in which
the module (#1) 310 and the module (#2) 320 run coopera-
tively; the module (#2) 320 is called from the module (#1)
310; and the module (#2) 320 is later switched back to the
module (#1) 310.

Herein, for example, as compared to the initialization
operation unit 111, the pre-switchover operation unit 104A,

10

15

20

25

30

35

40

45

50

55

60

65

20

and the post-switchover operation unit 106 A according to the
first embodiment described above; the initialization operation
unit 311, the pre-switchover operation unit 304A, and the
post-switchover operation unit 306 A in the module (#1) 310
differ in the fact that they access the module switch managing
table using a secure shared number and a module shared key
that are shared as a result of the initialization operation. The
same is the case regarding the module (#2) 320.

FIG. 22 is a flowchart for explaining exemplary operations
performed by the table access control unit 424. At the time
when the module switch managing table 422 is accessed, the
table access control unit 424 performs operations according
to the flowchart illustrated in FIG. 22.

In the case when the module (#1) 310 or the module (#2)
320 accesses the fields in the module switch managing table
422, the processor core 410 specifies the shared area number
and the module shared key of the address destination. For
example, when the module (#1) 310 accesses the module
switch managing table 422; firstly, the processor core 410
specifies the shared area number and the module shared key
of the address destination to the table access control unit 424
of the module switch managing unit 420.

At Step S424-1, the table access control unit 424 refers to
the module switch managing table 422 and obtains the value
of the valid bit corresponding to the specified shared area
number. Then, at Step S424-2, the table access control unit
424 determines whether or not the obtained valid bit is a
“value indicating invalidity” (Step S424-2).

If the obtained valid bit is determined to be a “value indi-
cating invalidity”, then the system control proceeds to Step
S424-3. Thereat, the table access control unit 424 determines
whether or not the access request specified by the processor
core 410 is a write request. As a result of determination, if it
is determined that the access request is a request other than a
write request, the system control proceeds to Step S424-6 and
the table access control unit 424 throws an exception.

On the other hand, at Step S424-3, if it is determined that
the access request is a write request, the system control pro-
ceeds to Step S424-4. Then, at Step S424-4, the table access
control unit 424 rewrites the valid bit corresponding to the
specified shared area number with a “value indicating valid-
ity”. Subsequently, at Step S424-5, specified writing is per-
formed at the specified area number in the specified module
switch managing table 422.

Meanwhile, at Step S424-2 mentioned above, if it is deter-
mined that the valid bit is not a “value indicating invalidity”,
the system control proceeds to Step S424-7. Then, at Step
S424-7, from the module switch managing table 422, the
table access control unit 424 obtains the module shared key
corresponding to the specified shared area number.

Subsequently, at Step S424-8, the table access control unit
424 determines whether or not the value of the module shared
key that has been obtained matches with the module shared
key specified by the module (#1) 310 or by the module (#2)
320.Ifitis determined that the module shared keys are match-
ing, the system control proceeds to Step S424-9 and the table
access control unit 424 executes the specified reading/writing
with respect to the module switch managing table 422. On the
other hand, if it is determined that the module shared keys are
not matching, the system control returns to Step S424-6 and
the table access control unit 424 throws an exception.

Given below is the explanation regarding the initialization
operation of modules performed according to the second
embodiment. When the execution of the module (#1) 310 and
the module (#2) 320 is started by the OS 180, the initialization
operation is performed by each of those modules so as to
enable the modules to run cooperatively. FIG. 23 is a flow-



US 9,116,741 B2

21

chart for explaining an example of the initialization operation
performed by the module (#1) 310 that functions as the appli-
cation module. FIG. 24 is a flowchart for explaining an
example of the initialization operation performed by the mod-
ule (#2) 320 that functions as the library module. The opera-
tions performed in the application module as illustrated in
FIG. 23 are performed cooperatively with the operations per-
formed in the library module as illustrated in FIG. 24.

The following explanation is given with the focus on the
flowchart illustrated in FIG. 23, and the explanation with
reference to the flowchart illustrated in FIG. 24 is given when
necessary. Moreover, the steps that are identical to the steps
explained with reference to FIG. 7 and FIG. 8 are referred to
by the same step numbers and the explanation thereof is not
repeated.

Once the execution by the OS 180 starts, at Step S111-1
illustrated in FIG. 23 and at Step S121-1 illustrated in FIG.
24, AKE is performed among the module (#1) 310 and the
module (#2) 320. As aresult of AKE, the module (#1) 310 and
the module (#2) 320 verify the validness of each other as well
as share a temporary key Key_AB.

Then, at Step S311-2 illustrated in FIG. 23, the initializa-
tion operation unit 311 of the module (#1) 310 generates,
from random numbers, the module shared key Key_shared
that is used in allowing an access to a particular entry (here-
inafter, referred to as “shared area”) in the module switch
managing table 422.

Subsequently, at Step S311-3, the initialization operation
unit 311 specifies the module shared key Key_shared and the
module identifier (having the value “#1”) of itself with
respect to a particular shared area number (such as “#17).
Herein, a shared area number points to the index of an entry
that is specified in the module switch managing table 422 and
that is shared among the modules. As aresult, a free area in the
module switch managing table 422 is secured. That is, a
shared area to be shared with the module (#2) 320 is secured
in the module switch managing table 422.

At Step S311-3 explained above, since the module switch
managing table 422 is accessed, the module switch managing
unit 420 performs access control according to the flowchart
illustrated in FIG. 22. In this case, the valid bit corresponding
to the specified shared area number is a “value indicating
invalidity” and the access request is a write request. There-
fore, the module switch managing unit 420 writes the speci-
fied module shared key and the specified module identifier
into the module shared key value field and the execution
module identifier field, respectively, in the module switch
managing table 422; as well as sets the valid bit to a “value
indicating validity”.

Subsequently, at Step S311-4, the module (#1) 310
encodes the secure shared area information as well as encodes
the module task identifier of itself with the temporary key
Key_AB, and sends the encoded data to the module (#2) 320
via the memory 280. Herein, the secure shared area informa-
tion contains the shared area number of the shared area
secured at Step S311-3 and contains the module shared key
Key_shared.

In this example, to the module (#2) 320, the module (#1)
310 sends a shared area number ‘“#1” of the shared area,
which is secured at Step S311-3, in the encoded form and the
shared key Key_shared in the encoded form as the secure
shared area information. Along with that, to the module (#2)
320, the module (#1) 310 sends the task identifier “#1” in the
encoded form as the module identifier of itself.

At Step S321-2 illustrated in FIG. 24, the module (#2) 320
uses the temporary key Key_AB to decode the data sent by the
module (#1) 310 and obtains the information related to the

5

10

15

20

25

30

35

40

45

50

55

60

65

22

secure shared area (i.e., obtains the shared area number “#1”
and the shared key Key_shared) and obtains the module iden-
tifier “#1”. That enables the module (#2) 320 to share the
information of the module (#1) 310.

Similarly, as the module identifier of itself, the module (#2)
320 encodes the task identifier “#2” with the key Key_AB and
sends the encoded task identifier “#2” to the module (#1) 310
via the memory 280. Then, the module (#1) 310 decodes the
data that is sent by the module (#2) 320 with the temporary
key Key_AB and obtains the module identifier “#2” indicat-
ing the module (#2) 320. That enables the module (#1) 310 to
share the information of the module (#2) 320.

At Step S121-4 illustrated in FIG. 24, the module (#2) 320
stops the operations just prior to the operations at calling
destination (described later) and goes into the sleep state, and
waits for being called from the module (#1) 310. Moreover, at
Step S111-6 illustrated in FIG. 23, the execution of the pro-
gram (#1) body 112 starts in the module (#1) 310.

Explained below with reference to FIG. 25 to FIG. 27 is an
operation of calling a module from another module. In an
identical manner to that described in the first embodiment, at
the time when a module (caller module) calls another module
(calling destination module), the pre-switchover operation
unit 304A or the pre-switchover operation unit 3048 per-
forms a pre-switchover operation with respect to the caller
module and then the post-switchover operation unit 306A or
the post-switchover operation unit 306B performs a post-
switchover operation with respect to the calling destination
module.

The following explanation is given for an example in which
the module (#1) 310 calls the function sub(5) written in the
program (#2) body 122 of the module (#2) 320. In the func-
tion sub(5), “sub” represents the function name and the
numerical value “5” written into the parenthesis represents
the parameter passed to the function sub( ).

FIG. 25 is a flowchart for explaining an example of the
pre-switchover operation according to the second embodi-
ment.

FIG. 26 is a flowchart for explaining an example of the
post-switchover operation according to the second embodi-
ment. Regarding the pre-switchover operation and the post-
switchover operation, a calling operation in which the caller
module calls the calling destination module has different
operation details than a returning operation in which the
calling destination module calls the caller module and makes
the caller module resume from the sleep state.

FIG. 27 schematically illustrates an overview of the
changes occurring in the state of the module switch managing
table 422 and in the states of the switchover history areas 118
and 128 as a result of performing the calling operation and the
returning operation (described later). In FIG. 27, “Key”,
“CMID”, “flag”, “parameter”, and “V” specified in the mod-
ule switch managing table 422 respectively represent the
module shared keys, the execution module identifiers, the
switchover flags, the switchover parameters, and the valid
flags. Herein, in the module switch managing table 422, the
states of entries corresponding to the shared area number
“#1” are illustrated.

Just prior to the initialization operation described above, no
information is stored in the fields for the module shared key,
the execution module identifier, the switchover flag, and the
switchover parameter. In the valid bit field, a value “0” is
stored as the “value indicating invalidity”. By performing the
initialization operation, the module shared key Key_shared
gets stored in the module shared key filed of the module
switch managing table 422, and the execution module iden-
tifier “#1” gets stored in the execution module identifier field



US 9,116,741 B2

23

of the module switch managing table 422. Moreover, in the
valid bit field, a value “1” gets stored as the “value indicating
validity”.

Firstly, the explanation is given regarding the calling
operation. In the module (#1) 310, just prior to calling the
module (#2) 320, the pre-switchover operation unit 304A
determines the type of module switch (Step S304-1). Herein,
it is determined that calling of a module is the reason for
module switch, and the system control proceeds to Step S304-
2. In order to ensure that, when making a return from the
calling destination module, the return occurs to the address of
the correct caller module; a caller address Addrl1 is stored in
the switchover history area 118 of the module (#1) 310.

Then, at Step S304-3, in the switchover flag field of the
module switch managing table 422, the pre-switchover
operation unit 304 A writes a switchover flag “call” indicating
that the reason for module switch is “calling”. At that time,
according to the flowchart illustrated in FIG. 22, the module
switch managing unit 420 performs determination using the
valid bit and the module shared key, and controls the writing
with respect to the module switch managing table 422.

That is, firstly, the module (#1) 310 specifies the shared
area number “#1”, the module shared key Key_shared, and
the switchover flag “call”. According to the flowchart illus-
trated in FIG. 22, the secure processor 400 (the module switch
managing unit 420) obtains, from the module switch manag-
ing table 422, the valid bit that is stored in the entry corre-
sponding to the shared area number “#1” specified by the
module (#1) 310 (Step S424-1 illustrated in FIG. 22). During
the initialization operation explained with reference to FIG.
23, the valid bit is already rewritten to a “value indicating
validity” (Step S424-4). Consequently, at Step S424-7 illus-
trated in FIG. 22, the module switch managing unit 420
obtains, from the module switch managing table 422, the
module shared key that is stored in the entry corresponding to
the shared area number “#1”.

The module switch managing unit 420 determines whether
or not the module shared key obtained from the module
switch managing table 422 matches with the module shared
key Key_shared specified by the module (#1) 310. In this
example, since the obtained module shared key matches with
the module shared key Key_shared; the module switch man-
aging unit 420 writes a switchover flag “call” in the switcho-
ver flag field of the entry corresponding to the shared area
number “#1” in the module switch managing table 422.

Subsequently, at Step S304-4, in the switchover parameter
field of the module switch managing table 422, the pre-
switchover operation unit 304A writes the function name
“sub” and the corresponding parameter “5” of the calling
destination module as the calling information required in
module switch. In this case too, in an identical manner to that
described above, the module switch managing unit 420 con-
trols the writing with respect to the module switch managing
table 422 based on the determination result regarding the
valid bit and the module shared key.

Then, the system control proceeds to Step S304-8 that is
common to the calling operation and the returning operation.
In the switchover source module identifier field of the module
switch managing table 422, the pre-switchover operation unit
304A writes the module identifier “#1” of itself. Moreover, at
Step S304-9, in the execution module identifier field of the
module switch managing table 422, the pre-switchover
operation unit 304A writes the module identifier “#2” of the
calling destination module (in this example, the module (#2)
320).

In the operations performed at Step S304-8 and Step
S304-9 too, in an identical manner to that described above,

10

15

20

25

30

35

40

45

50

55

60

65

24

the module switch managing unit 420 controls the writing
with respect to the module switch managing table 422 based
on the determination result regarding the valid bit and the
module shared key.

Then, the system control proceeds to Step S304-10, and the
module (#1) 310 goes into the sleep state. With that, the
module (#1) 310 prepares itself for a case when it is made to
return from the calling destination module or prepares itself
for being called by another module. As far as going into the
sleep state is concerned, the module (#1) 310 stops perform-
ing operations just prior to the post-switchover operation.

Once the module (#1) 310 goes into the sleep state at Step
S304-10, the module running rights are switched over to the
OS 180. Then, because of the scheduler of the OS 180, the
module running rights are transferred to the module (#2) 320.
With that, the module (#2) 320 resumes running.

Once the module running rights are switched over, the
post-switchover operation is performed according to the
sequence illustrated in FIG. 26. When the running module is
switched from the module (#1) 310 to the module (#2) 320,
the post-switchover operation unit 306B in the module (#2)
320 specifies number of the shared area number “#1” and the
module shared key Key_shared, and requests the secure pro-
cessor 400 to obtain the execution module identifier (Step
S306-1).

That is, firstly, the module (#2) 320 specifies the shared
area number “#1” and the module shared key Key_shared.
According to the flowchart illustrated in FIG. 22, the secure
processor 400 (the module switch managing unit 420)
obtains, from the module switch managing table 422, the
valid bit that is stored in the entry corresponding to the shared
area number “#1” specified by the module (#1) 320 (Step
S424-1 illustrated in FIG. 22). During the initialization opera-
tion explained with reference to FIG. 23, the valid bit is
already rewritten to a “value indicating validity” (Step S424-
4). Consequently, at Step S424-7 illustrated in FIG. 22, the
module switch managing unit 420 obtains, from the module
switch managing table 422, the module shared key that is
stored in the entry corresponding to the shared area number
“#17.

The module switch managing unit 420 determines whether
or not the module shared key obtained from the module
switch managing table 422 matches with the module shared
key Key_shared specified by the module (#1) 320. In this
example, since the obtained module shared key matches with
the module shared key Key_shared; the module switch man-
aging unit 420 obtains the execution module identifier “#2”
from the execution module identifier field of the entry corre-
sponding to the shared area number “#1” in the module switch
managing table 422. Then, the execution module identifier
“#2” is sent to the module (#2) 320.

In the module (#2) 320, the post-switchover operation unit
306B determines whether or not the value “#2” of the execu-
tion module identifier sent by the secure processor 400
matches with the value of the module identifier of the module
(#2) 320 (Step S306-2).

If it is determined at Step S306-2 that the value of the
execution module identifier does not match with the value of
the module identifier of the module (#2) 320, the system
control proceeds to Step S306-9 indicating the sleep state, and
the state of the module (#2) 320 returns to the state just prior
to performing the calling operation. On the other hand, if it is
determined at Step S306-2 that the value of the execution
module identifier matches with the value of the module iden-
tifier of the module (#2) 320, the system control proceeds to
Step S306-3.



US 9,116,741 B2

25

In this example, in the execution module identifier field of
the entry corresponding to the shared area number “#1” in the
module switch managing table 422, the module identifier
“#2” is written. Hence, it is determined that the value of the
execution module identifier matches with the module identi-
fier of the module (#2) 320. Consequently, the post-switcho-
ver operation unit 306B gets to know that the module (#2) 320
is to be run. Thus, the system control proceeds to Step S306-3
and the post-switchover operation is continued.

At Step S306-3, the post-switchover operation unit 3068
specifies the shared area number “#1” and the module shared
key Key_shared, and obtains the switchover flag from the
module switch managing table 422. In this case too, in an
identical manner to that described above, the module switch
managing unit 420 controls the reading from the module
switch managing table 422 based on the determination result
regarding the valid bit of the entry corresponding to the shared
area number “#1” and based on the module shared key.

Then, at Step S306-4, it is determined whether the value of
the switchover flag that is obtained indicates “calling” or
“returning”. If it is determined that the value of the switchover
flag indicates “calling”, the system control proceeds to Step
S306-5. On the other hand, if it is determined that the value of
the switchover flag indicates “returning”, the system control
proceeds to Step S306-7.

In this example, as described above, at Step S304-3 illus-
trated in FIG. 25, the switchover flag “call” indicating “call-
ing” is written in the switchover flag field of the module
switch managing table 422. Hence, it can be seen that the
value of the switchover flag is determined to be indicating
“calling” and that a function call is requested. Consequently,
the system control proceeds to Step S306-5.

At step S306-5, in order to make the caller module return,
the post-switchover operation unit 306B specifies the shared
area number “#1” and the module shared key Key_shared,
and retrieves the switchover source module identifier from
the switchover source module identifier field of the module
switch managing table 422. In this case too, in an identical
manner to that described above, the module switch managing
unit 420 controls the reading from the module switch man-
aging table 422 based on the determination result regarding
the valid bit of the entry corresponding to the shared area
number “#1” and based on the module shared key. The
retrieved switchover source module identifier is stored in the
switchover history area 128 of the module (#2) 320.

Subsequently, at Step S306-6, the post-switchover opera-
tion unit 306B specifies the shared area number “#1” and the
module shared key Key_shared; and retrieves, from the
switchover parameter field of the module switch managing
table 422, the function name “sub” and the parameter “5”
written as calling information. In this case t00, in an identical
manner to that described above, the module switch managing
unit 420 controls the reading from the module switch man-
aging table 422 based on the determination result regarding
the valid bit of the entry corresponding to the shared area
number “#1”” and based on the module shared key. According
to the function name “sub” and the parameter “5”, the execu-
tion of the function sub(5) in the program (#2) body 122
starts.

As illustrated in FIG. 27, at the point of time when the
calling operation is complete, in the module switch managing
table 422 are stored the execution module identifier “#2”, the
switchover flag “call”, and the switchover parameters “sub”
and “5” that are written during the pre-switchover operation
at Step S304-3, Step S304-4, and Step S304-9, respectively,
illustrated in FIG. 25. The value in the valid bit field remains
unchanged at “1”. Moreover, in the switchover history area

25

40

45

26
118 of the module (#1) 310 is stored the caller address Addrl
that is written at Step S304-2. Furthermore, in the switchover
history area 128 of the module (#2) 320 is stored the module
identifier “#1” that is written during the post-switchover
operation at Step S306-5 illustrated in FIG. 26.

Given below is the explanation regarding the returning
operation. In this example, the operation is performed so that
the execution is returned from the module (#2) 320, which
functions as the calling destination module, to the module
(#1) 310, which functions as the caller module that had called
the module (#2) 320.

In the module (#2) 320, just prior to returning to the caller
module from the module (#2) 320, the pre-switchover opera-
tion unit 304B of the module (#2) 320 determines the type of
module switch (Step S304-1). Herein, it is determined that
returning to a module is the reason for module switch, and the
system control proceeds to S304-5. Then, at Step S304-5, the
pre-switchover operation unit 304B obtains, from the
switchover history area 128, the module identifier “#1” that
was stored at the time when the module (#2) 320 was called by
the switchover source module (at Step S306-5 illustrated in
FIG. 26).

Then, at Step S304-6, the pre-switchover operation unit
304B specifies the shared area number “#1” and the module
shared key Key_shared, and writes a switchover flag “ret”
indicating “returning” in the switchover flag field of the mod-
ule switch managing table 422. In this case too, in an identical
manner to that described above, the module switch managing
unit 420 controls the writing with respect to the module
switch managing table 422 based on the determination result
regarding the valid bit of the entry corresponding to the shared
area number “#1” and based on the module shared key.

Then, at Step S304-7, the pre-switchover operation unit
304B specifies the shared area number “#1” and the module
shared key Key_shared; and writes, as returning-from-calling
information required in the returning operation, the execution
result “Result_1", which is the result of running of the module
(#2), in the switchover parameter field of the module switch
managing table 422.

The system control then proceeds to Step S304-8 that is
common to the calling operation and the returning operation.
In the switchover source module identifier field of the module
switch managing table 422, the pre-switchover operation unit
304 A writes the module identifier “#2” of itself. Moreover, at
Step S304-9, in the execution module identifier field of the
module switch managing table 422, the pre-switchover
operation unit 304 A writes the module identifier “#1” of the
calling destination module (in this example, the module (#1)
310).

In the operations performed at Step S304-8 and Step
S304-9 too, in an identical manner to that described above,
the module switch managing unit 420 controls the writing
with respect to the module switch managing table 422 based
on the determination result regarding the valid bit and the
module shared key.

Then, the system control proceeds to Step S304-10, and the
module (#2) 320 goes into the sleep state. With that, the
module (#2) 320 prepares itself for a case when it is made to
return from the calling destination module or prepares itself
for being called by another module. As far as going into the
sleep state is concerned, the module (#2) 320 stops perform-
ing operations just prior to the post-switchover operation.

Once the module (#2) 320 goes into the sleep state at Step
S304-10, the module running rights are switched over to the
OS 180. Then, because of the scheduler of the OS 180, the
module running rights are transferred to the module (#1) 310.
With that, the module (#1) 310 resumes running.



US 9,116,741 B2

27

Once the module running rights are switched over, the
post-switchover operation is performed according to the
sequence illustrated in FIG. 26. When the running module is
switched from the module (#2) 320 to the module (#1) 310,
the post-switchover operation unit 306A in the module (#1)
310 specifies the shared area number “#1” and the module
shared key Key_shared, and requests the secure processor
400 to obtain the execution module identifier. In response, the
secure processor 400 retrieves the execution module identi-
fier “#1” from the execution module identifier field of the
module switch managing table 422, and sends the execution
module identifier “#1” to the module (#1) 310.

That is, firstly, the module (#1) 310 specifies the shared
area number “#1” and the module shared key Key_shared.
According to the flowchart illustrated in FIG. 22, the secure
processor 400 (the module switch managing unit 420)
obtains, from the module switch managing table 422, the
valid bit that is stored in the entry corresponding to the shared
area number “#1” specified by the module (#1) 310 (Step
S424-1 illustrated in FIG. 22). During the initialization opera-
tion explained with reference to FIG. 23, the valid bit is
already rewritten to a “value indicating validity” (Step S424-
4). Consequently, at Step S424-7 illustrated in FIG. 22, the
module switch managing unit 420 obtains, from the module
switch managing table 422, the module shared key that is
stored in the entry corresponding to the shared area number
“#17.

The module switch managing unit 420 determines whether
or not the module shared key obtained from the module
switch managing table 422 matches with the module shared
key Key_shared specified by the module (#1) 310. In this
example, since the obtained module shared key matches with
the module shared key Key_shared; the module switch man-
aging unit 420 obtains the execution module identifier “#1”
from the execution module identifier field of the entry corre-
sponding to the shared area number “#1” in the module switch
managing table 422.

Once the secure processor 400 sends the execution module
identifier “#1”, the post-switchover operation unit 306A
determines whether or not the value “#1” of the execution
module identifier sent by the secure processor 400 matches
with the value of the module identifier of the module (#1) 310
(Step S306-2).

If it is determined at Step S306-2 that the value of the
execution module identifier does not match with the value of
the module identifier of the module (#1) 310, the system
control proceeds to Step S306-9 indicating the sleep state, and
the state of the module (#1) 310 returns to the state just prior
to performing the calling operation. On the other hand, if it is
determined at Step S306-2 that the value of the execution
module identifier matches with the value of the module iden-
tifier of the module (#1) 310, the system control proceeds to
Step S306-3.

In this example, in the execution module identifier “#1”
from the execution module identifier field of the entry corre-
sponding to the shared area number “#1” in the module switch
managing table 422, the module identifier “#1” is written.
Hence, it is determined that the value of the execution module
identifier matches with the module identifier of the module
(#1) 310. Consequently, the post-switchover operation unit
306A gets to know that the module (#1) 310 is to be run. Thus,
the system control proceeds to Step S306-3 and the post-
switchover operation is continued.

At Step S306-3, the post-switchover operation unit 306A
specifies the shared area number “#1” and the module shared
key Key_shared, and obtains the switchover flag from the
module switch managing table 422. In this case too, in an

10

15

20

25

30

35

40

45

50

55

60

65

28

identical manner to that described above, the module switch
managing unit 420 controls the reading from the module
switch managing table 422 based on the determination result
regarding the valid bit of the entry corresponding to the shared
area number “#1” and based on the module shared key.

Then, at Step S306-4, it is determined whether the value of
the switchover flag that is obtained indicates “calling” or
“returning”. If it is determined that the value of the switchover
flag indicates “calling”, the system control proceeds to Step
S306-5. On the other hand, if it is determined that the value of
the switchover flag indicates “returning”, the system control
proceeds to Step S306-7.

In this example, at Step S304-6 explained above with ref-
erence to FIG. 25, since the switchover flag “ret” is written in
the switchover flag field of the module switch managing table
422, it can be seen that the value of the switchover flag is
determined to be indicating “returning” and a function call is
requested. Consequently, the system control proceeds to Step
S306-7.

At Step S306-7, the post-switchover operation unit 306 A
obtains, from the switchover history area 118, the caller
address Addr1 that is stored at Step S304-2 described earlier,
and then deletes the caller address Addr1 from the switchover
history area 118. Subsequently, at Step S306-8, the post-
switchover operation unit 306A specifies the shared area
number “#1” and the module shared key Key_shared, and
obtains the returning-from-calling information from the
switchover parameter field of the module switch managing
table 422. Then, the module (#1) 310 refers to the execution
result Result_1 specified in the returning-from-calling infor-
mation and resumes the execution by returning to the caller
address Addrl.

In this way, in the second embodiment, the module (#1)
310 and the module (#2) 320 share a module shared key, and
the module switch managing unit 420 makes use of the mod-
ule shared key and performs access control with respect to the
entries in the module switch managing table 422. As a result,
it becomes possible to ensure that reading/writing with
respect to the entries written in the module switch managing
table 422 can be performed only from the module (#1) 310
and the module (#2) 320, but not from the OS 180 or other
modules. Hence, the values written in the module switch
managing table 422 cannot be rewritten by the OS 180 or
another module that has been altered with ill intent. Because
of that, it can be said that the module switch managing unit
420 fulfills the role that is equivalent to the role fulfilled by the
secure shared area 181 according to the first embodiment.

As illustrated in FIG. 27, at the point of time when the
returning operation is complete, in the module switch man-
aging table 422 are stored the switchover flag “ret”, the
switchover parameter “Result_1", and the execution module
identifier “#1” that are written during the pre-switchover
operation at Step S304-6, Step S304-7, and Step S304-9,
respectively, illustrated in FIG. 25. Moreover, since the caller
address Addrl is deleted from the switchover history area 118
of'the module (#1) 310 during the post-switchover operation
unit at Step S306-7 illustrated in FIG. 26, no information is
stored in the switchover history area 118 of the module (#1)
310. In an identical manner, since the module identifier of the
caller is deleted from the switchover history area 128 of the
module (#2) 320 during the pre-switchover operation unit at
Step S304-5, no information is stored in the switchover his-
tory area 128 of the module (#2) 320.

Meanwhile, in the second embodiment, although the mod-
ule switch managing unit 420 is disposed in the secure pro-
cessor 400, that is not the only possible case. Alternatively, as



US 9,116,741 B2

29

illustrated in FIG. 28, a trusted virtual machine monitor
(Trusted VMM) 440 can also be disposed with an identical
configuration.

For example, it is possible to think of a configuration in
which a processor 450 can be disposed as a commonly-used
processor not including the module switch managing unit 420
that is unique to the second embodiment, and the module
switch managing unit 420 is disposed inside the virtual
machine monitor 440. Then, the module (#1) 310, the module
(#2) 320, amodule (#3) 330, and a module (#4) 340 can make
use of the module switch managing unit 420 so that module
switch can be performed in an identical manner to that
described in the second embodiment. In the example illus-
trated in FIG. 28, a plurality of OSs (the OS 180, an OS_y
180A, and an OS_z 180B) run in the virtual machine monitor
440; and each module runs in the OS 180. Meanwhile, the
module switch managing unit 420 need not be configured as
hardware, but can also be configured in the OS.

Moreover, in the second embodiment, it is explained that
all the values written in the module switch managing table
422 are stored in the secure processor 400. However, that is
not the only possible case. Alternatively, only a part of the
information written in the module switch managing table 422
can be stored in the secure processor 400, while the remaining
part can be stored in the secure shared area 181 established in
the memory 280 according to the first embodiment.

Furthermore, in the second embodiment, it is explained
that, while accessing the module switch managing table 422,
reading/writing is performed with respect to one field at a
time. However, that is not the only possible case. For
example, it is also possible to perform reading/writing with
respect to a plurality of fields at one time.

Third Embodiment

Given below is the explanation regarding a third embodi-
ment. According to the first and second embodiments
described above, modules are called by performing a com-
monly-used calling operation. In contrast, in the third
embodiment, the explanation is given for an example in
which modules are called using language exceptions.

Herein, the explanation regarding language exceptions is
given first. In the field of computers, the term “exceptions”
points to two types, namely, hardware exceptions and lan-
guage exceptions. A hardware exception points to an event
such as a hardware interrupt or an unauthorized instruction. A
hardware exception is handled by means of a processor
mechanism such as transferring the control to an interrupt
handler that handles hardware exceptions.

In contrast, a language exception points to an exceptional
event such as not being able to find a file. Language excep-
tions are provided in programming language environments of
C++, Java (registered trademark), or the like. A language
exception is processed using a mechanism in which a caller
function is traced from the function in which the language
exception has occurred, and the control is transferred to an
exception handler such as a library capable of handling that
language exception. In the third embodiment, the explanation
is given about the language exceptions.

Herein, a mechanism that handles such language excep-
tions is called a language exception handling mechanism.
More particularly, in a language exception handling mecha-
nism, the description of handling language exceptions is
given not in a calling destination module but in a caller mod-
ule, so that error handling can be performed in a manner
tailored to the caller module. Such a mechanism is explained
in “The Design and Evolution of C++” written by Bjarne

30

35

40

45

30

Stroustrup. In a programming language environment of C or
C++, the description is given in the try-catch format and is
used in a number of applications. Thus, the language excep-
tion handling mechanism is a well-known mechanism.

FIG. 29 schematically illustrates operations performed by
a language exception handling mechanism 800. When a lan-
guage exception occurs in a function that is written in a
module, the language exception handling mechanism 800
calls an exception handling library. Then, the exception han-
dling library firstly searches for the exception handler capable
of handling the language exception that has occurred. A
search for the exception handler can be performed, for
example, based on the type of language exception. If the
intended exception handler is found, then the control is trans-
ferred to that exception handler. However, if the intended
exception handler is not found, then function unwinding is
performed.

Function unwinding points to the operation performed for
returning to the caller function. Based on frame information
specified in a stack; the stack is returned to a pre-calling state,
the address of the caller is identified, and the control is trans-
ferred to that address. Upon returning to the caller function,
the exception handling library searches for the exception
handler capable of handling language exceptions. In this way,
by performing function unwinding until the exception han-
dler capable of handling language exceptions is found, the
exception handling library tracks back to the caller function.

In the example illustrated in FIG. 29, the explanation is
given for the following case: three modules, namely, amodule
#1, a module #2, and a module #3 are running; the module #2
and the module #3 are called in that order from the module #1;
a language exception occurs while the module #3 is running;
and the exception handler capable of catching that language
exception is present in the module #1. In FIG. 29, solid lines
represent the flow of execution of programs, and wavy lines
represent the sequence of functions that are retrieved during
function unwinding performed by the language exception
handling mechanism 800.

When a language exception occurs in the module #3, the
handling thereof is given over to the language exception
handling mechanism 800. Firstly, the language exception
handling mechanism 800 searches for the exception handler,
which is a function written in the module #3 in which the
language exception has occurred and which is capable of
handling the language exception. In this example, since the
exception handler capable of handling the language excep-
tion is not found, the language exception handling mecha-
nism 800 performs function unwinding and returns to the
caller function specified in the module #3. Then, in an iden-
tical manner, the language exception handling mechanism
800 searches for the exception handler in the caller function.
Until the intended exception handler is found, the language
exception handling mechanism 800 repeats the same opera-
tion.

In the example illustrated in FIG. 29, the language excep-
tion handling mechanism 800 returns from the module #3 to
the module #2, and searches for the exception handler in the
module #2. If the intended exception handler is not found in
the module #2, then the language exception handling mecha-
nism 800 returns from the module #2 to the module #1, and
searches for the exception handler is performed in the module
#1. In this example, after returning to the functions specified
in the module #1, the exception handler capable of handling
the language exception is retrieved. Once the exception han-
dler is retrieved, the language exception handling mechanism
800 transfers the execution control to the exception handler
that has been retrieved.



US 9,116,741 B2

31

Consider the case when the handling of language excep-
tions by the language exception handling mechanism 800 is
applied to the first embodiment or the second embodiment
described above. As explained with reference to FIG. 3, in the
secure processor, each module manages a separate stack.
Hence, if function unwinding is performed within a module,
the handling is different than the handling done when per-
forming function unwinding across the modules. In the case
of performing function unwinding within a module, the caller
function of a particular function can be identified by inspect-
ing the stack of that module as per normal. In contrast, in the
case of performing function unwinding across the modules,
since a stack in a different module cannot be directly
inspected, it is not possible to identify the caller function.
Consequently, in the secure processor assumed in the
embodiment, if the configuration has a plurality of modules,
then there are times when function unwinding performed by
the language exception handling mechanism 800 of the con-
ventional type does not function in a proper manner.

FIG. 30 is a schematic diagram of an exemplary configu-
ration of a system that can be implemented in the third
embodiment. In FIG. 30, an overall hardware configuration
and a system view are illustrated at the same time. Mean-
while, in the description with reference to FIG. 30, the con-
stituent elements identical to those illustrated in FIG. 1 are
referred to by the same reference numerals and the explana-
tion thereof is not repeated.

From the hardware perspective, a target system can have
the same configuration as that explained with reference to
FIG. 1. Hence, the explanation thereof is not repeated. In the
target system, the single OS (operating system) 180 runs in
the processor core 210 of the secure processor 200, and one or
more modules run in the OS 180. In the example illustrated in
FIG. 30, a plurality of modules, namely, a module (#1) 510, a
module (#2) 520, a module (#3) 530, and a module (#4) 540
is running.

In the example illustrated in FIG. 30, it is indicated that the
module (#1) 510 has a task identifier “#1” and is generated
from a program A (Prg A). The module (#2) 520 has a task
identifier “#2” and is generated from a program B (Prg B).
The module (#3) 530 has a task identifier “#3” and is gener-
ated from a program C (Prg C). The module (#4) 540 has a
task identifier “#4” and is generated from the program B (Prg
B).

FIG. 31 is a functional block diagram of an exemplary
module configuration according to the third embodiment. In
FIG. 31, the module (#1) 510, the module (#2) 520, and the
module (#3) 530 run cooperatively, and each module includes
a module switch mechanism according to the third embodi-
ment. Herein, it is assumed that the module (#1) 510 is an
application module, while the module (#2) 520 and the mod-
ule (#3) 530 are library modules.

In an identical manner to the configuration illustrated in
FIG. 4, the module (#1) 510 includes the initialization opera-
tion unit 111, the program (#1) body 112, the pre-switchover
operation unit 104A, the post-switchover operation unit
106A, and the switchover history area 118. In addition, the
module (#1) 510 also includes an exception notifying unit
505A and an exception receiving unit 507A. Similarly, the
module (#2) 520 includes the initialization operation unit
121, the program (#2) body 122, the pre-switchover operation
unit 104B, the post-switchover operation unit 106B, and the
switchover history area 128. In addition, the module (#2) 520
also includes an exception notifying unit 505B and an excep-
tion receiving unit 507B, which respectively perform the
same operations as the operations performed by the exception
notifying unit 505A and the exception receiving unit 507 A of

25

30

40

45

50

32

the module (#1) 510. Moreover, the secure shared area 181 in
the memory 280 is shared between the module (#1) 510 and
the module (#2) 520 that run cooperatively.

Although not illustrated in detail in FIG. 31, the module
(#3) 530 also has the same configuration as that of the module
(#1) 510 and the module (#2) 520. Besides, the module (#3)
also shares the secure shared area 181 in the memory 280 with
the module (#1) 510 and the module (#2) 520.

FIG. 32 schematically illustrates an example of the han-
dling of a language exception that occurs among the modules
to which the third embodiment is applied. In FIG. 32, long-
dashes lines illustrate the flow of execution of programs that
are generated by applying the third embodiment.

In the following explanation with reference to FIG. 32, the
module (#1) 510, the module (#2) 520, and the module (#3)
530 run cooperatively; and the module (#1) 510 calls the
module (#3) 530 via the module (#2) 520. Herein, the expla-
nation is given for the following example: a language excep-
tion occurs in the module (#3) 530 that has been called by the
module (#2) 520; and function unwinding is performed until
an exception handler is found in the module (#1) 510. Mean-
while, the module (#1) 510, the module (#2) 520, and the
module (#3) 530 respectively include a language exception
handling mechanism 800A, a language exception handling
mechanism 800B, and a language exception handling mecha-
nism 800C.

In the third embodiment, function unwinding across the
modules is carried out by performing an operation that is
slightly modified from the operation of switching modules
according to the first embodiment. As far as the initialization
operation is concerned, the operations explained with refer-
ence to FIG. 7 and FIG. 8 can be performed without modifi-
cation. Hence, that explanation is not repeated. As a result of
performing the initialization operation, the module (#1) 510,
the module (#2) 520, and the module (#3) become able to
share the secure shared area 181 that is established in the
memory 280.

Moreover, in the third embodiment, in a normal state when
no language exception has occurred, regarding the operations
performed while a module calls another module and regard-
ing the operations performed while the module that had called
the other module returns to running, the operations explained
with reference to FIG. 6 to FIG. 10 according to the first
embodiment can be performed without modification. Hence,
that explanation is not repeated.

Given below with reference to FIG. 33 to FIG. 35 is the
explanation of the operations performed while performing
function unwinding across the modules. FIG. 33 is a flow-
chart for explaining an exemplary exception notifying opera-
tion according to the third embodiment. FIG. 34 is a flowchart
for explaining an exemplary exception receiving operation
according to the third embodiment.

FIG. 35 corresponds to FIG. 11 described above and sche-
matically illustrates an overview of the changes occurring in
the state of the secure shared area 181 and in the states of the
switchover history areas of the module (#1) 510, the module
(#2) 520, and the module (#3) 530 as a result of performing
the calling operation, the returning operation, the language
exception notifying operation, and the language exception
receiving operation in the case when a language exception
occurs.

Since the time of sequential calling of modules from the
module (#1) 510 up to the transfer of execution rights to the
module (#3) 530, the state of the secure shared area 181 and
the states of the switchover history areas change in an iden-
tical manner to that explained with reference to FIG. 11
according to the first embodiment. In the example illustrated



US 9,116,741 B2

33

in FIG. 35, immediately after the initialization operation is
performed, only the execution module identifier “#1” is
stored in the secure shared area 181. Moreover, no informa-
tion is stored in any switchover history area.

In such a state, when the module (#2) 520 is called, the
execution module identifier “#2” gets stored in the execution
module identifier field 182 of the secure shared area 181; the
switchover flag “call” gets stored in the switchover flag field
183 of the secure shared area 181; and the switchover param-
eters “sub” and “5” get stored in the switchover parameter
field 184 of the secure shared area 181. Besides, the caller
address Addrl gets stored in the switchover history area 118,
and the module identifier “#1” gets stored in the switchover
history area 128. However, no information is stored in the
switchover history area of the module (#3) 530.

When the module (#3) 530 is called, the execution module
identifier “#3” gets stored in the execution module identifier
field 182 of the secure shared area 181; the switchover flag
“call” gets stored in the switchover flag field 183 of the secure
shared area 181; and a function name “hello” gets stored as
the switchover parameter in the switchover parameter field
184 of the secure shared area 181. Besides, the caller address
Addrl get stored in the switchover history area 118; the
module identifier “#1” and a caller address Addr2 gets stored
in the switchover history area 128; and the module identifier
“#2” gets stored in the switchover history area of the module
(#3) 530.

With reference to FIG. 33, when a language exception
occurs in the module (#3) 530, in an identical manner to the
case of'a normal language exception, the control is transferred
to the language exception handling mechanism 800C of the
module (#3) 530. Then, starting from the function in which
the language exception has occurred, the language exception
handling mechanism 800C searches for the exception handler
capable of handling that language exception. As an example,
the language exception handling mechanism 800C can search
for the exception handler based on the type of language
exception that has occurred.

In the example illustrated in FIG. 32, the language excep-
tion handling mechanism 800C cannot find the exception
handler in the function in which the language exception has
occurred. Hence, the language exception handling mecha-
nism 800C performs function unwinding to return to the
caller function within the module (#3) 530 and searches for
the exception handler in the caller function. In this example,
since the exception handler is not found in the caller function
as well, the language exception handling mechanism 800C
transfers the control to the exception notifying unit of the
module (#3) 530. Then, the exception notifying unit 505
performs an operation to return to the module (#2) 520 that
had called the module (#3) 530.

In FIG. 33, at Step S505-1, from the switchover history
area of the module (#3) 530, the exception notifying unit of
the module (#3) 530 obtains the module identifier “#2” that
was stored at the time when the module (#3) 530 was called by
the switchover source module (i.e., the unwinding destination
module). Then, the exception notifying unit of the module
(#3) 530 deletes the module identifier “#2” from the switcho-
ver history area of the module (#3) 530.

Subsequently, at Step S505-2, in the switchover flag field
183 of the secure shared area 181, the module (#3) 530 writes
a switchover flag “exception” indicating that the reason for
switching over to the module (#2) 520 is “language excep-
tion”. In other words, it can be said that the switchover flag
“exception” represents a value indicating a case other than a
normal call or a normal return.

10

15

20

25

30

35

40

45

50

55

60

65

34

Then, at Step S505-3, in the switchover parameter field 184
of the secure shared area 181, the module (#3) 530 writes
language exception information “excData”, which contains
the type of language exception, contains the contents of lan-
guage exception, and contains a message. That is, the lan-
guage exception information “excData” represents informa-
tion that indicates the details regarding the reason for module
switch.

Subsequently, at Step S505-4, in the execution module
identifier field 182 of the secure shared area 181, the module
(#3) 530 writes the module identifier “#2” indicating the
unwinding destination module. Then, at Step S505-5, the
module (#3) 530 prepares itself for a case of being called
again later, stops performing operations just prior to the post-
switchover operation, and goes into the sleep state.

Once the module (#3) 530 goes into the sleep state at Step
S505-5, the module running rights are switched over to the
OS 180. Then, because of the scheduler of the OS 180, the
module running rights are transferred to the module (#2) 520.
With that, the module (#2) 520 resumes running.

Atthat point of time, as illustrated in FIG. 35, the execution
module identifier “#2”, the switchover flag “exception” (in
FIG. 35, abbreviated as “exc”), and the switchover parameter
“excData” are stored in the secure shared area 181. Moreover,
the caller module address Addrl is stored in the switchover
history area 118; while the caller module address Addr2 and
the module identifier “#1” are stored in the switchover history
area 128. However, no information is stored in the switchover
history area of the module (#3) 530.

Once the module (#2) 520 receives, by means of an inter-
rupt, an exception notification from the exception notifying
unit of the module (#3) 530; the control is transferred to the
exception receiving unit 507B of the module (#2) 520.

With reference to FIG. 34, the exception receiving unit
507B obtains the execution module identifier from the execu-
tion module identifier field 182 of the secure shared area 181
(Step S507-1). Then, at Step S507-2, it is determined whether
or not the value of the execution module identifier that is
obtained matches with the module identifier “#2” of the mod-
ule (#2) 520. If it is determined that the value of the execution
module identifier does not match with the module identifier
“#2” of the module (#2) 520, the system control proceeds to
Step S507-9, and the module (#2) 520 goes into the sleep state
and waits for being called again later. When the module (#2)
520 is called, the system control returns to Step S507-1 and
the operations are started again.

On the other hand, if it is determined that the value of the
execution module identifier matches with the module identi-
fier “#2” of the module (#2) 520, the system control proceeds
to Step S507-3. In this example, the execution module iden-
tifier “#2” is stored in the execution module identifier field
182 of the secure shared area 181. Since that value matches
with the module identifier “#2” of the module (#2) 520, it can
be determined that the module (#2) 520 is to be run. Thus, the
system control proceeds to Step S507-3.

At Step S507-3, from the switchover flag field 183 of the
secure shared area 181, the module (#2) 520 retrieves the
switchover flag. Then, at Step S507-4, the module (#2) 520
confirms whether or not the switchover flag has the value
“exception” indicating an exception.

Once it is confirmed that the switchover flag has the value
“exception” indicating an exception; then, at Step S507-5, the
module (#2) 520 obtains the caller address Addr2 from the
switchover history area 128, and then deletes the caller
address Addr2 from the switchover history area 128.

Subsequently, at Step S507-6, the module (#2) 520 obtains
the language exception information “excData” from the



US 9,116,741 B2

35

switchover parameter ficld 184 of the secure shared area 181
and throws a mock language exception to the caller address
Addr2 using the language exception information “excData”.

Upon issuing the language exception, the module (#2) 520
transfers the control to the language exception handling
mechanism 800B of the module (#2) 520. Then, within the
module (#2) 520, the language exception handling mecha-
nism 800B searches for the exception handler capable of
handling the language exception that has occurred. If the
exception handler is found, the language exception is handled
by that exception handler. On the other hand, if the exception
handler is not found, function unwinding is performed. In this
example, since the language exception handling mechanism
800B cannot find the exception handler within the module
(#2) 520, the control is transtferred to the exception notifying
unit 505B.

Then, in an identical manner to the case of notifying the
occurrence of a language exception from the module (#3) 530
to the module (#2) 520, the exception notifying unit 505B
notifies the occurrence of a language exception from the
module (#2) 520 to the module (#1) 510. Once the occurrence
of'alanguage exception is notified to the module (#1) 510, the
execution control is transterred to the module (#1) 510. In the
exception receiving unit 507 A ofthe module (#1) 510, amock
language exception is thrown.

Atthat point oftime, as illustrated in FIG. 35, the execution
module identifier “#1”, the switchover flag “exception”, and
the switchover parameter “excData” that are written during
the exception notifying operation are stored in the secure
shared area 181. However, no information is stored in any
switchover history area.

Once the language exception is thrown, the control is trans-
ferred to the language exception handling mechanism 800A
of the module (#1) 510. Then, in an identical manner as
described above, the language exception handling mecha-
nism 800A searches for the exception handler capable of
handling the language exception that has occurred. When the
exception handler is found, the control is transferred to that
exception handler.

In this way, even among the modules that are protected
with separate contexts and even if the context in other mod-
ules cannot be directly manipulated; by adding a language
exception handling operation before and after switching over
to amodule, it becomes possible to perform function unwind-
ing for language exceptions.

Meanwhile, in the third embodiment, the exception noti-
fying unit and the pre-switchover operation unit are config-
ured to be independent of each other. However, that is not the
only possible case. Alternatively, it is possible to configure
the pre-switchover operation unit to also have the functions of
the exception notifying unit. That is, in the pre-switchover
operation unit, in the case of normal calling, the normal
pre-switchover operation is performed; and in the case of
calling due to a language exception, the operations are per-
formed according to the functions of the exception notifying
unit.

Similarly, in the third embodiment, the exception receiving
unit and the post-switchover operation unit are configured to
be independent of each other. However, that is not the only
possible case. Alternatively, it is possible to configure the
post-switchover operation unit to also have the functions of
the exception receiving unit. That is, during the post-switcho-
ver operation, in the case of normal calling, the normal post-
switchover operation is performed; and in the case of calling
due to a language exception, the operations are performed
according to the functions of the exception receiving unit.

10

15

20

25

30

35

40

45

50

55

60

65

36

Moreover, in the third embodiment, it is explained that
each module independently holds a language exception han-
dling mechanism. However, that is not the only possible case.
For example, instead of each module holding a language
exception handling mechanism, the configuration can be such
that a platform on which the modules run includes a language
exception handling mechanism, and each module generates
an instance of that language exception handling mechanism
and implements the instance.

Furthermore, in the third embodiment, it is explained that,
in order to search for the exception handler, each module calls
a language exception handling mechanism by issuing a mock
language exception. However, that is not the only possible
case. For example, alternatively, the exception receiving unit
of each module can explicitly call a language exception han-
dling mechanism using a command such as the call com-
mand.

Fourth Embodiment

Given below is the explanation of a fourth embodiment. In
the fourth embodiment, the explanation is given regarding the
operations corresponding to the function setjmp and the func-
tion longjmp that are provided in the C library. The function
setjmp and the function longjmp are provided to enable
execution of a mechanism for jumping to the outside of a
function.

FIG. 36 schematically illustrates an example of operations
performed using the functions setjmp and longjmp. In the
example illustrated in FIG. 36, three modules, namely, mod-
ules #1 to #3 are running; and the module #2 and the module
#3 are called in that order from the module #1. While the
module #1 is running, the function setjmp is executed; and
while the module #3 is running, the function longjmp is
executed.

The function setjmp holds context information, such as the
program counter or the stack pointer, of the location at which
the function setjmp is executed. The function longjmp refers
to the context information stored in the function setjmp, and
returns to the state just prior to executing the function setjmp.
In the example illustrated in FIG. 36, in the function setjmp,
the state just prior to executing the function setjmp in the
module #1 is stored. In the function longjmp, the module #3
returns to the module #1, and the state of the module #1 is
restored. In this way, the mechanism for jumping to the out-
side of a function is realized by obtaining the context infor-
mation of the return destination and by overwriting the cur-
rent context with the obtained context information.

In the secure processor assumed in the embodiment, as
explained with reference to FIG. 3, each module manages a
stack (context) in an independent manner. Hence, the mecha-
nism for jumping to the outside of functions across the mod-
ules does not function in a proper manner.

This pointis explained in more detail. In the case of execut-
ing the functions setjmp and longjmp within a module; typi-
cally, the context information can be obtained using the func-
tion setjmp, and a switchover to that context can be done
using the function longjmp. However, in the case of executing
the functions setjmp and longjmp across the modules; if the
modules are managing contexts independent of each other,
then it is not possible to directly overwrite the context of a
different module. Hence, on the presumption that the mod-
ules manage contexts independent of each other, there are
times when it is not possible to switch over to the context
obtained using the function setjmp.

Herein, the modules manage the contexts independent of
each other. Hence, in the case of performing context switcho-



US 9,116,741 B2

37

ver using the function longjmp; all those modules which are
called from the function setjmp prior to the execution of the
function longjmp need to be returned to the states just prior to
the execution of the function setjmp on the contexts. That is
done to avoid a case in which, if the function longjmp is used
to modify the context in only the module in which the func-
tion setjmp is executed, then the other modules happen to
have the contexts at the stage of executing the function
longjmp.

In the fourth embodiment, the functions setjmp and
longjmp are executed among the modules that manage the
contexts in an independent manner. In the fourth embodi-
ment, a set of context information is managed using a module
identifier and using a unique context number assigned to the
context, but the context information is not directly commu-
nicated among the modules. Since it is highly likely that a set
of context information contains information that needs to be
kept confidential from other modules, the module identifiers
and the context numbers are used in place of the context
information.

In the fourth embodiment in which a secure processor is
used, a context registering operation that is equivalent to the
function setjmp is performed so as to register the current
contexts and to obtain context numbers indicating context
information. Moreover, a context setting operation that is
equivalent to the function longjmp is performed so as to
specify a module identifier and a context number for the
purpose of setting the contexts in the registered context infor-
mation.

FIG. 37 is a functional block diagram of an exemplary
module configuration according to the fourth embodiment. In
the description with reference to FIG. 37, the constituent
elements identical to those according to the first embodiment
are referred to by the same reference numerals and the expla-
nation thereof is not repeated. Moreover, as far as the hard-
ware configuration including a secure processor is concerned,
the configuration explained with reference to FIG. 1 can be
applied without modification. Hence, the explanation thereof
is not repeated.

With reference to FIG. 37, a module (#1) 910 as well as a
module (#2) 920 include a module switch mechanism accord-
ing to the fourth embodiment. Herein, it is assumed that the
module (#1) 910 is an application module and the module
(#2) 920 is a library module. Along with a module (#3) 930
described later, the module (#1) 910 and the module (#2) 920
run cooperatively with each other.

In an identical manner to the configuration illustrated in
FIG. 4, the module (#1) 910 includes the initialization opera-
tion unit 111, a program (#1) body 912, the pre-switchover
operation unit 104 A, and the switchover history area 118. In
addition, the module (#1) 910 includes a post-switchover
operation unit 906 A that performs somewhat different opera-
tions than the post-switchover operation unit 106 A illustrated
in FIG. 4. Moreover, the module (#1) 910 also includes a
context modification notifying unit 905A, a context modifi-
cationreceiving unit 907A, and a context managing table 919.

Similarly, the module (#2) 920 includes the initialization
operationunit 121, a program (#2) body 922, the pre-switcho-
ver operation unit 104B, and the switchover history area 128.
In addition, the module (#2) 920 includes a post-switchover
operation unit 906B that performs somewhat different opera-
tions than the post-switchover operation unit 106B illustrated
in FIG. 4. Moreover, the module (#2) 920 also includes a
context managing table 929, as well as includes a context
modification notifying unit 905B and a context modification
receiving unit 907B that respectively perform the same opera-

10

30

40

45

55

38

tion performed by the context modification notifying unit
905 A and the context modification receiving unit 907B of the
module (#1) 910.

The program (#1) body 912 of the application module
includes a context registering unit 908 and a context setting
unit 909A. In contrast, the module (#2) 920 includes only a
context setting unit 909B but not the context registering unit
908, in the program (#2) body 922. The same is the case
regarding the module (#3) 930 that also functions as a library
module. Meanwhile, the context registering unit 908 is
equivalent to the function setjmp, and the context setting unit
909A is equivalent to the function longjmp.

Although not illustrated in detail in FIG. 37, the module
(#3) 930 also has the same configuration as the module (#1)
910 and the module (#2) 920. The module (#1) 910, the
module (#2) 920, and the module (#3) 930 share the secure
shared area 181 established in the memory 280.

FIG. 38 illustrates an exemplary data configuration of the
context managing table 919, the context managing table 929,
and a context managing table (not illustrated) of the module
(#3) 930. In the following explanation, unless otherwise
specified, the context managing table 919, the context man-
aging table 929, and the context managing table (not illus-
trated) of the module (#3) 930 are representatively explained
as a context managing table.

In a context managing table, with context numbers serving
as indices, n number of entries having indices from “#1” to
“#n” are written. Each entry contains a module identifier field
and a context information field. In the context information
field, the program counters or the stack pointers are stored as
context information.

Explained below with reference to FIG. 39 to FIG. 44 are
the operations performed for context registration/context set-
ting according to the fourth embodiment. Herein, the expla-
nation is given for the following example: context registration
is performed in the module (#1) 910; the module (#2) 920 is
called from the module (#1) 910; the module (#3) 930 is
called from the module (#2) 920; and context setting is per-
formed in the module (#3) 930. Meanwhile, as far as the
initialization operation is concerned, the operations
explained with reference to FIG. 7 and FIG. 8 can be per-
formed without modification. Hence, that explanation is not
repeated.

FIG. 39 corresponds to FIG. 11 described above and sche-
matically illustrates an overview of the changes occurring in
the state of the secure shared area 181, in which context
registration/context setting is performed, and changes occur-
ring in the states of the switchover history areas of the module
(#1) 910, the module (#2) 920, and the module (#3) 930. At
the point of time when the initialization operation is com-
plete, the execution module identifier “#1” gets stored in the
execution module identifier field 182 of the secure shared area
181. However, no information is stored in the switchover flag
field 183 and the switchover parameter field 184 of the secure
shared area 181. Moreover, no information is stored in the
switchover history areas of the module (#1) 910, the module
(#2) 920, and the module (#3) 930.

The following explanation is given regarding the context
registering operation. FI1G. 40 is a flowchart for explaining an
example of the context registering operation according to the
fourth embodiment. In the module (#1) 910, the execution of
the program (#1) body 912 starts. Then, in order to perform
the operations equivalent to the function setjmp, the module
(#1) 910 transfers the control to the context registering unit
908. At Step S908-1, the context registering unit 908 obtains
current context information C in an identical manner when
the commonly-used function setjmp is executed.



US 9,116,741 B2

39

Then, at Step S908-2, the context registering unit 908
decides on a context number “#m” of an empty entry in the
context managing table 919, and sends the context number
“#m” back to the module (#1) 910. Subsequently, the context
registering unit 908 stores the context information C, which
has been obtained at Step S908-1, in the context information
field of the entry having the context number “#m” in the
context managing table 919.

In the commonly-used functions setjmp and longjmp, the
contexts are directly transferred to other modules. In contrast,
in the fourth embodiment, the contexts are managed using the
context managing table, and only context setting information
is transferred to other modules. Herein, when a set of context
information is registered in the context managing table; the
context setting information contains the module identifier,
which is used in identifying the module to which the regis-
tered context belongs, and contains the context number,
which is determined by the context registering unit 908.

In the fourth embodiment, while performing context set-
ting, a module does not directly specify the context informa-
tion but specifies the context setting information.

The following explanation is given regarding the calling
operation performed to call a module. When context registra-
tion in the module (#1) 910 is complete, the module (#1) 910
calls the module (#2) 920 and in turn the module (#2) 920
calls the module (#3) 930. Herein, the operations performed
by the pre-switchover operation unit 104A are identical to the
operations explained with reference to FIG. 9. Hence, the
explanation thereof is not repeated.

As aresult of performing the pre-switchover operation, the
caller address Addrl, the switchover flag “call” indicating the
calling operation, and the execution module identifier “#2”
indicating the execution module are respectively written in a
call address field Addrl, the switchover flag field 183 of the
secure shared area 181, and the execution module identifier
field 182 of the secure shared area 181.

In the switchover flag field 183 of the secure shared area
181, the function name “sub” and the parameter “5” of the
function in the calling destination module are written as the
switchover parameters. In addition to that, according to the
fourth embodiment, in the switchover flag field 183 of the
secure shared area 181, the context setting information is also
written. That is, the module identifier “#1”, which indicates
the module in which context registration is performed, and
the context number “#m” are written in the switchover flag
field 183 of the secure shared area 181. As a result, in the
calling destination module, it becomes possible to perform
context setting.

By performing the pre-switchover operation and the post-
switchover operation, the module identifier “#1” and the con-
text number “#m” are sequentially transferred to the calling
destination module.

FIG. 41 is an exemplary flowchart for explaining the post-
switchover operation according to the fourth embodiment.
With reference to FIG. 41, the steps that are identical to the
steps explained with reference to FIG. 10 are referred to by
the same step numbers and the explanation thereof is not
repeated. When the module (#2) 920 is called from the mod-
ule (#1) 910, the post-switchover operation unit 906B of the
module (#2) 920 confirms whether the value “#2” is written in
the execution module identifier field 182 of the secure shared
area 181 (Step S106-1, Step S106-2).

Then, the post-switchover operation unit 906B obtains the
switchover flag from the switchover flag field 183 of the
secure shared area 181 (Step S106-3). By referring to the
value “call” that is obtained, the post-switchover operation
unit 906B gets to know that a function call is requested (Step

10

15

20

25

30

35

40

45

50

55

60

65

40

S106-4). Then, at Step S106-5, the post-switchover operation
unit 906B retrieves the module identifier “#1” from the
switchover source module identifier field 185 of the secure
shared area 181 and stores that module identifier in the
switchover history areca 128.

Subsequently, at Step S106-6, from the switchover param-
eter field 184 of the secure shared area 181, the post-switcho-
ver operation unit 906B obtains the function name “sub” and
the parameter “5” written as calling information as well as
obtains the module identifier “#1” and the context number
“#m” for which the context registering operation was per-
formed.

Then, at Step S906-7, the post-switchover operation unit
906B determines whether or not the obtained switchover
parameters include the context setting information. If it is
determined that the obtained switchover parameters do not
include the context setting information, then the system con-
trol proceeds to Step S906-9. If it is determined that the
obtained switchover parameters include the context setting
information, then the system control proceeds to Step S906-8.
Subsequently, at Step S906-8, of the switchover parameters
obtained at Step S106-6 illustrated in FIG. 41, the post-
switchover operation unit 906B stores the information
included in the context setting information in the context
managing table 929.

More particularly, at Step S906-8, the module identifier
and the context number that are included in the context setting
information are stored in the context managing table 929.
Along with that, in the context information field of the context
managing table 929 is stored the context information that is
required to return to the caller module by performing the
context setting operation (described later). That context infor-
mation is also used in a context modification notifying opera-
tion (described later).

At that time, as illustrated in FIG. 39, in the secure shared
area 181 is stored the execution module identifier “#2” and
the switchover flag “call” that were written during the pre-
switchover operation. In addition to that, in the secure shared
area 181, as the switchover parameters, the function name
“sub” and the parameter “5” as well as the module identifier
“#1” and the context number “#m” are stored. In the switcho-
ver history area 118 ofthe module (#1) 910 is stored the caller
address Addrl, while in the switchover history area 128 of the
module (#2) is stored the module identifier “#1”.

Subsequently, at Step S906-9, of the switchover param-
eters obtained at Step S106-6 described above, the post-
switchover operation unit 906B starts executing the function
sub( ) in the program (#2) body 922 based on the function
name “sub” and the parameter “5” of the calling destination.

When the module (#3) 930 is called from the module (#2)
920, the same operations are performed. Once calling of the
module (#3) 930 is complete, the context managing table of
each ofthe module (#1), the module (#2) 920, and the module
(#3) 930 happen to contain the entries of the module identifier
“#1” and the context number “#m”.

Moreover, in the context managing table 919 is stored the
context information obtained at the point of time when con-
text registration is performed by following the operations
illustrated in FIG. 40. Furthermore, in the context managing
table 929 as well as in the context managing table of the
module (#3) 930 is stored the context information required for
returning to the caller module.

At that time, as illustrated in FIG. 39, in the secure shared
area 181 are stored the execution module identifier “#3” and
the switchover flag “call” that were written during the pre-
switchover operation. In addition to that, in the secure shared
area 181, as the switchover parameters, a function name



US 9,116,741 B2

41

“hello”, the module identifier “#1”, and the context number
“#m” are stored. In the switchover history area 128 of the
module (#2) 920, the module identifier “#1” and the caller
address Addr2 are stored. In the switchover history area of the
module (#3) 930, the module identifier “#2” is stored. In the
switchover history area 118 of the module (#1) 910, the caller
address Addrl is stored.

The following explanation is given regarding the context
setting operation. In this example, as illustrated in FIG. 36,
the context setting operation is performed in the module (#3)
930.

FIG. 42 is a flowchart for explaining an example of the
context setting operation according to the fourth embodi-
ment. At Step S909-1, based on the module identifier “#1”
and the context number “#m” that are included in the context
setting information and that constitute the switchover param-
eters obtained from the secure shared area 181 at Step S106-6
illustrated in FIG. 41, the context setting unit of the module
(#3) 930 refers to the context managing table of the module
(#3) 930. Then, the context setting unit of the module (#3) 930
obtains the context information corresponding to the module
identifier “#1” and the context number “#m”, and deletes that
context information from the context managing table.

Subsequently, at Step S909-2, the context setting unit of the
module (#3) 930 overwrites the current context information
in the module (#3) 930 with the context information obtained
at Step S909-1. In this case, the context information obtained
at Step S909-1 is required for returning to the module (#2)
920 that had called the module (#3) 930. Consequently, the
module (#3) 930 transfers the control to the context modifi-
cation notifying unit thereof.

FIG. 43 is a flowchart for explaining an example of the
context modification notifying operation according to the
fourth embodiment. At Step S905-1, from the switchover
history area of the module (#3) 930, the context modification
notifying unit retrieves the module identifier “#2” that was
stored at the time when the module (#3) 930 was called by the
module (#2) 920; and then deletes the module identifier “#2”
from the switchover history area.

Subsequently, at Step S905-2, in the switchover flag field
183 of the secure shared area 181, the context modification
notifying unit of'the module (#3) 930 writes a switchover flag
“Lj”, which indicates that the reason for module switch is
“context setting”. In other words, it can be said that the
switchover flag “j” represents a value indicating a case other
than a normal call, a normal call return, or a language excep-
tion. Moreover, at Step S905-3, in the switchover parameter
field 184 of the secure shared area 181, the context modifica-
tion notifying unit writes the module identifier “#1” and the
context number “#m” as context setting information. In other
words, it can be said that the context setting information
indicates the reason for module switch.

Subsequently, at Step S905-4, in the execution module
identifier field 182 of the secure shared area 181, the context
modification notifying unit of the module (#3) 930 writes the
module identifier “#2” indicating the caller module. Besides,
at Step S905-6, the context modification notifying unit of the
module (#3) 930 switches the module (#3) into the sleep state.
By putting into the sleep state and stopping operations just
prior to the pre-switchover operation, the module (#3) 930
prepares itself for being called again.

Atthat point of time, as illustrated in FIG. 39, in the secure
shared area 181 are stored the execution module identifier
“#2” and the switchover flag “I j”, which were written during
the context modification notifying operation. Besides, the
module identifier “#1” and the context number “#m” are
stored as the switchover parameters in the secure shared area

5

10

15

20

25

30

40

45

55

60

65

42

181. In the switchover history area 118 of the module (#1) 910
is stored the caller address Addrl, while in the switchover
history area 128 of the module (#2) 920 is stored the caller
address Addr2. However, no information is stored in the
switchover history area of the module (#3) 930.

Once the module (#3) 930 goes into the sleep state at Step
S905-5, the module running rights are switched over to the
OS 180. Then, because of the scheduler of the OS 180, the
module running rights are transferred to the module (#2) 920.
With that, the module (#2) 920 resumes running. Upon
resuming running, when the module (#2) 920 receives a
modification notification from the context modification noti-
fying unit of the module (#3) 930, the control is transferred to
the context modification receiving unit 907B.

FIG. 44 is a flowchart for explaining an example of a
context modification receiving operation according to the
fourth embodiment. At Step S907-1, the context modification
receiving unit 907B obtains the execution module identifier
from the execution module identifier field 182 of the secure
shared area 181. Then, at Step S907-2, the context modifica-
tion receiving unit 907B determines whether the value of the
execution module identifier that is obtained matches with the
module identifier “#2” of the module (#2) 920. If it is deter-
mined that the value of the execution module identifier does
not match with the module identifier “#2” of the module (#2)
920, the system control proceeds to Step S907-9 indicating
the sleep state, and the module (#2) 920 goes into the sleep
state and waits for being called again later. When the module
(#2) 920 is called, the system control returns to Step S907-1
and the operations are started again.

On the other hand, at Step S907-2, if it is determined that
the value of the execution module identifier matches with the
value of the module identifier “#2” of the module (#2) 920,
the system control proceeds to Step S907-3. In this example,
the execution module identifier “#2” is stored in the execution
moduleidentifier field 182 ofthe secure shared area 181. That
value matches with the module identifier “#2” of the module
(#2) 920. Hence, it can be determined that the module (#2)
920 is to be run, and the system control proceeds to Step
S907-3.

At Step S907-3, the context modification receiving unit
907B retrieves the switchover flag from the switchover flag
field 183 of the secure shared area 181. Then, at Step S907-4,
the context modification receiving unit 907B confirms
whether or not the switchover flag has the value “Lj” indicat-
ing that “context setting” is the reason for module switch.
Once it is confirmed that the switchover flag has the value
“Lj”, the system control proceeds to Step S907-5.

At Step S907-5, the context modification receiving unit
907B obtains the context setting information from the
switchover parameter field 184 of the secure shared area 181,
and then transfers the control to the context setting unit 909B.

With reference to FIG. 42, at Step S909-1, based on the
module identifier “#1” and the context number “#m” that are
included in the context setting information and that constitute
the switchover parameters stored in the secure shared area
181, the context setting unit 909B refers to the context man-
aging table 929. Then, the context setting unit 909B obtains
the context information corresponding to the module identi-
fier “#1” and the context number ‘“#m”, and deletes that
context information from the context managing table 929.

The context information obtained at Step S909-1 is
required for returning to the module (#1) 910 that had called
the module (#2) 920. Hence, at Step S909-2, the module (#2)
920 transfers the control from the context setting unit 909B to
the context modification notifying unit 905B.



US 9,116,741 B2

43

With reference to FIG. 43, the context modification noti-
fying unit 905B performs operations identical to the opera-
tions performed by the context modification notifying unit of
the module (#3) 930. That is, the context modification noti-
fying unit 905B writes the switchover flag “Ij” in the
switchover flag field 183 of the secure shared area 181, writes
the module identifier “#1” and the context number “#m” in
the switchover parameter field 184 of the secure shared area
181, and writes the module identifier “#1” indicating the
caller module in the execution module identifier field 182 of
the secure shared area 181. Then, the context modification
notifying unit 905B switches the module (#2) 920 into the
sleep state (see Step S905-1 to Step S905-6 illustrated in FIG.
43).

Atthat point of time, as illustrated in FIG. 39, in the secure
shared area 181 are stored the module identifier “#1” and the
switchover flag “Lj” that were written during the context
modification notifying operation. In addition to that, the mod-
ule identifier “#1” and the context number “#m” are stored as
the switchover parameters in the secure shared area 181.
Moreover, in the switchover history area 118 of the module
(#1) 910 is the caller address Addr1. However, no information
is stored in the switchover history areas of the other modules.

Once the module (#2) 920 goes into the sleep state, the
module running rights are switched over to the OS 180. Then,
because of the scheduler of the OS 180, the module running
rights are transferred to the module (#1) 910. With that, the
module (#1) 910 resumes running. Upon resuming running,
when the module (#1) 910 receives a modification notifica-
tion from the context modification notifying unit 905B of the
module (#2) 920, the control is transferred to the context
modification receiving unit 907A.

The context modification receiving unit 907A performs
identical operations to the operations performed by the con-
text modification receiving unit 907B of the module (#2) 920.
With reference to F1G. 44, the context modification receiving
unit 907A confirms that the value “#1” is written in the
execution module identifier field 182 of the secure shared area
181 (Step S907-1, Step S907-2).

Then, the context modification receiving unit 907 A obtains
the switchover flag from the switchover flag field 183 of the
secure shared area 181, and confirms that the switchover flag
has the value “Ij” indicating that “context setting” is the
reason for module switch (Step S907-3, Step S907-4).

Then, at Step S907-5, from the switchover parameter field
184 of the secure shared area 181, the context modification
receiving unit 907 A obtains the context setting information
included in the switchover parameters, and obtains the mod-
ule identifier and the context number from the context setting
information. Then, the context modification receiving unit
907A specifies the module identifier and the context number
obtained from the context setting information, and transfers
the control to the context setting unit 909A.

With reference to FIG. 42, at Step S909-1, based on the
module identifier “#1” and the context number “#m” that are
included in the context setting information and that constitute
the switchover parameters stored in the secure shared area
181, the context setting unit 909 A refers to the context man-
aging table 919. Then, from the context managing table 919,
the context setting unit 909A obtains the context information
corresponding to the module identifier “#1” and the context
number “#m”; and deletes that context information from the
context managing table 919.

The context information obtained at Step S909-1 belongs
to the location at which context registration was performed in
the module (#1) 910 during the context registering operation.
Hence, at Step S909-2, the module (#1) 910 returns the execu-

10

15

20

25

30

35

40

45

50

55

60

65

44

tion position to the location at which registration was per-
formed during the context registering operation, and resumes
the execution.

In this way, in a module in which context registration is
performed, the context information obtained at the point of
time of performing context registration is stored. Moreover,
in the other modules other than the module in which context
registration is performed, the values for context setting are
written, and the context information that is obtained during
the pre-switchover operation, which is performed at the time
of'switching over the execution to the caller module, is stored.
Because of that, while returning according to the context
setting, itbecomes possible to return to the location of context
registration simply by continually overwriting with the con-
text information stored in the context managing tables.

Meanwhile, in the fourth embodiment, the context modi-
fication notifying unit and the pre-switchover operation unit
are configured to be independent of each other. However, that
is not the only possible case. Alternatively, it is possible to
configure the pre-switchover operation unit to also have the
functions of the context modification notifying unit. That is,
in the pre-switchover operation unit, in the case of normal
calling, the normal pre-switchover operation is performed;
and in the case of context setting, the operations are per-
formed according to the functions of the context modification
notifying unit.

Similarly, in the fourth embodiment, the context modifica-
tion receiving unit and the post-switchover operation unit are
configured to be independent of each other. However, that is
not the only possible case. Alternatively, it is possible to
configure the post-switchover operation unit to also have the
functions of the context modification receiving unit. That is,
in the post-switchover operation unit, in the case of normal
calling, the normal pre-switchover operation is performed;
and in the case of context setting, the operations are per-
formed according to the functions of the context modification
receiving unit.

Moreover, in the fourth embodiment, it is explained that
each module independently holds a context managing table.
However, that is not the only possible case. For example, in an
identical manner to the secure shared area, a context manag-
ing table can be maintained in an area shared by the modules
running cooperatively. Furthermore, in the fourth embodi-
ment, it is explained that a set of context information is
managed using a module identifier and a context number.
However, that is not the only possible case. That s, it is also
possible to implement a method in which module identifiers
and context numbers represent unique values used across the
modules.

Fifth Embodiment

Given below is the explanation of a fifth embodiment. In
the fifth embodiment, the explanation is given regarding a
modification example of the operations corresponding to the
function setjmp and the function longjmp that are provided in
the C library. Herein, in an identical manner to that described
above, the explanation is given for an example in which
context registration is performed in a module #1 functioning
as the application module, and context setting is performed in
a module #3 functioning as a library module via a module #2
also functioning as a library module.

In the fifth embodiment, in an identical manner to the
fourth embodiment, a set of context information is managed
using a module identifier and a context number. Moreover, in
the fifth embodiment, the context registering operation that is
equivalent to the function setjmp is performed to obtain con-



US 9,116,741 B2

45

text numbers indicating context information. Furthermore,
the context setting operation that is equivalent to the function
longjmp is performed to specify a module identifier and a
context number so as to switchover the context.

FIG. 45 is a functional block diagram of an exemplary
module configuration according to the fifth embodiment. In
the description with reference to FIG. 45, the constituent
elements identical to those illustrated in FIG. 37 are referred
to by the same reference numerals and the explanation thereof
is not repeated. Moreover, as far as the hardware configura-
tion including a secure processor is concerned, the configu-
ration explained with reference to FIG. 1 can be applied
without modification. Hence, the explanation thereof is not
repeated.

With reference to FIG. 45, a module (#1) 710 as well as a
module (#2) 720 include a module switch mechanism accord-
ing to the fifth embodiment. Herein, it is assumed that the
module (#1) 710 is an application module and the module
(#2) 720 is a library module. Along with a module (#3) 730
described later, the module (#1) 710 and the module (#2) 720
run cooperatively with each other.

The module (#1) 710 includes the initialization operation
unit 111, a program (#1) body 712, the pre-switchover opera-
tion unit 104A, a post-switchover operation unit 706A, the
switchover history area 118, the context modification notify-
ing unit 905A, the context modification receiving unit 907 A,
and a context managing table 719. The program (#1) body
712 includes the context registering unit 908 and a context
setting unit 702A. The context registering unit 908 is equiva-
lent to the function setjmp, and the context setting unit 702A
is equivalent to the function longjmp.

Of those constituent elements, the context setting unit
702A and the context managing table 719 correspond to, but
have some different functions than, the context setting unit
902A and the context managing table 919, respectively,
explained with reference to FIG. 37 according to the fourth
embodiment.

Similarly, the module (#2) 720 includes the initialization
operationunit 121, a program (#2) body 722, the pre-switcho-
ver operation unit 104B, the post-switchover operation unit
106B, the switchover history area 128, the context modifica-
tion notifying unit 905B, the context modification receiving
unit 907B, and a context managing table 729. The program
(#2) body 722 includes a context setting unit 702B that is
equivalent to the function longjmp.

In a similar manner to the module (#1) 710, of the constitu-
ent elements of the module (#2) 720, the context setting unit
702B and the context managing table 729 correspond to, but
have some different functions than, the context setting unit
902B and the context managing table 929, respectively,
explained with reference to FIG. 37 according to the fourth
embodiment.

Although not illustrated in detail in FIG. 45, the module
(#3) 730 also has the same configuration as the module (#2)
720. In the module (#3) 730, a program (#3) body includes a
context setting unit (not illustrated). The module (#1) 710, the
module (#2) 720, and the module (#3) 730 share the secure
shared area 181 as, for example, the area Sh_mem1 estab-
lished in the memory 280.

FIG. 46 illustrates an exemplary data configuration of the
context managing table 719, the context managing table 729,
and a context managing table (not illustrated) of the module
(#3) 730. In the following explanation, unless otherwise
specified, the context managing table 719, the context man-
aging table 729, and the context managing table (not illus-
trated) of the module (#3) 730 are representatively explained
as a context managing table.

25

35

40

45

50

46

In a context managing table, with context numbers serving
as indices, n number of entries having indices from “#1” to
“#n” are written. Each entry contains a context information
field in which a program counter or a stack pointer is stored as
context information.

Explained below with reference to FIG. 43, FIG. 44, FIG.
47, and FIG. 48 are the operations performed for context
registration/context setting according to the fifth embodi-
ment. Herein, the explanation is given for the following
example: context registration is performed in the module (#1)
710; the module (#2) 720 is called from the module (#1) 710;
the module (#3) 730 is called from the module (#2) 720; and
context setting is performed in the module (#3) 730. Mean-
while, as far as the initialization operation is concerned, the
operations explained with reference to FIG. 7 and FIG. 8 can
be performed without modification. Hence, that explanation
is not repeated.

FIG. 47 corresponds to FIG. 11 described above and sche-
matically illustrates an overview of the changes occurring in
the state of the secure shared area 181 and in the states of the
switchover history areas of the module (#1) 710, the module
(#2) 720, and the module (#3) 730. At the point of time when
the initialization operation is complete, the execution module
identifier “#1” gets stored in the execution module identifier
field 182 of the secure shared area 181. However, no infor-
mation is stored in the switchover flag field 183 and the
switchover parameter field 184 of the secure shared area 181.
Moreover, no information is stored in the switchover history
areas of the module (#1) 710, the module (#2) 720, and the
module (#3) 730.

Firstly, in the module (#1) 710 functioning as the applica-
tion module, the context registering operation is performed in
the same sequence as the sequence of the context registering
operation explained with reference to FIG. 40 according to
the fourth embodiment. At that time, in the entry (#m) in the
context managing table 719, the context present during the
context registering operation is registered.

Once context registration is completed in the module (#1)
710, the module (#2) 720 is called from the module (#1) 710
and then the module (#3) 730 is called from the module (#2)
720. The operations performed by the pre-switchover opera-
tion unit 104A at the time of calling the module (#2) 720 from
the module (#1) 710 as well as the operations performed by
the pre-switchover operation unit 104B at the time of calling
the module (#3) 730 from the module (#2) 720 are identical to
the operations explained with reference to FIG. 7. Hence, the
explanation thereof is not repeated.

As aresult of performing the pre-switchover operation, the
caller address Addrl, the switchover flag “call” indicating the
calling operation, and the execution module identifier “#2”
indicating the execution module are respectively written in a
call address field Addrl, the switchover flag field 183 of the
secure shared area 181, and the execution module identifier
field 182 of the secure shared area 181.

In the switchover flag field 183 of the secure shared area
181, the function name “sub” and the parameter “5” of the
function in the calling destination module are written as the
switchover parameters. In addition to that, according to the
fifth embodiment, in the switchover flag field 183 of the
secure shared arca 181, the context setting information is
written. That is, the module identifier “#1”, which indicates
the module in which context registration is performed, and
the context number “#m” are written in the switchover flag
field 183 of the secure shared area 181. As a result, in the
calling destination module, it becomes possible to perform
context setting.



US 9,116,741 B2

47

By performing the pre-switchover operation and the post-
switchover operation, the module identifier “#1” and the con-
text number “#m” are sequentially transferred to the calling
destination module.

Once the pre-switchover operation is completed in the
pre-switchover operation unit 104A and in the pre-switchover
operation unit 104B, the caller module is called and the mod-
ule to be run is switched. When the control is transferred to the
module to be run, the post-switchover operation is performed
in that module. Herein, the post-switchover operation is iden-
tical to the post-switchover operation explained with refer-
enceto FIG. 41, which in turn is identical to the post-switcho-
ver operation according to the first embodiment. Hence, the
explanation of the post-switchover operation is not repeated.

Explained below with reference to FIG. 47 are the changes
in the state of the secure shared area 181 and in the state of the
switchover history area of each module occurring as a result
of'performing a calling operation performed to call a module.
After the control is switched over from the module (#1) 710 to
the module (#2) 720, at the point of time when the post-
switchover operation is completed in the module (#2) 720, the
execution module identifier “#2” and the switchover flag
“call” are stored in the secure shared area 181. Along with
that, in the secure shared area 181, as the switchover param-
eters, the function name “sub” and the parameter “5” as well
as the module identifier “#1” and the context number “#m”
are stored. Moreover, the caller address Addrl is stored in the
switchover history area 118 of the module (#1) 710, while the
module identifier “#1” is stored in the switchover history area
128 of the module (#2) 720.

Similarly, after the control is switched over from the mod-
ule (#2) 720 to the module (#3) 730, at the point of time when
the post-switchover operation is completed in the module
(#3) 730, the execution module identifier “#3” and the
switchover flag “call” are stored in the secure shared area 181.
In addition to that, in the secure shared area 181, as the
switchover parameters, the function name “hello”, the mod-
ule identifier “#1”, and the context number “#m” are stored.
Inthe switchover history area 128 of the module (#2) 720, the
module identifier “#1” and the caller module address Addr2
are stored. In the switchover history area of the module (#3)
730, the module identifier “#2” is stored. In the switchover
history area 118 of the module (#1) 710, the caller address
Addr1 is stored.

Atthat time, the context managing table 719 of the module
(#1) 710 happens to include the entry of the context number
“#m”. On the other hand, no information is included in the
context managing tables of the module (#2) 720 and the
module (#3) 730. In this respect, the fifth embodiment differs
from the fourth embodiment.

The following explanation is given regarding the context
setting operation according to the fifth embodiment. In this
example, as illustrated in FIG. 36, the context setting opera-
tion is performed in the module (#3) 730.

FIG. 48 is a flowchart for explaining an example of the
context setting operation according to the fifth embodiment.
Firstly, the context setting unit of the module (#3) 730 refers
to the context setting information (the module identifier and
the context number), which is received from the caller module
via the secure shared area 181, and accordingly performs the
context setting operation. Firstly, at Step S707-1, the context
setting unit of the module (#3) 730 determines whether or not
the value of the module identifier matches with the module
identifier indicating the module (#3) 730. If it is determined
that the value of the module identifier matches with the mod-
ule identifier indicating the module (#3) 730, then the system
control proceeds to Step S707-2.

10

15

20

25

30

35

40

45

50

55

60

65

48

At Step S707-2, the context setting unit of the module (#3)
730 obtains the context information corresponding to the
context number, and then deletes that context information
from the context managing table. Subsequently, at Step S707-
3, the context setting unit of the module (#3) 730 overwrites
the current context information in the module (#3) 730 with
the context information obtained at Step S707-1.

Meanwhile, at Step S707-1, if it is determined that the
value of the module identifier does not match with the module
identifier indicating the module (#3) 730, the system control
proceeds to Step S707-4. In this case, returning to the caller
module is determined to be necessary. Therefore, at Step
S707-4, the context setting unit of the module (#3) 730
returns the context such as the stack of the module (#3) 730 to
the state attained immediately after the switchover. Then, the
control is transferred to the context modification notifying
unit of the module (#3) 730.

In this example, since the module identifier “#1” is differ-
ent than the module identifier “#3” of the module (#3) 730,
the system control proceeds to Step S707-4 and the context
such as the stack of the module (#3) 730 is returned to state
attained prior to the switchover. Then, the control is trans-
ferred to the context modification notifying unit of the module
(#3) 730. The operations performed by the context modifica-
tion notifying unit are identical to those explained with ref-
erence to FIG. 43 according to the fourth embodiment.
Hence, the explanation thereof is not repeated.

At that point of time, as illustrated in FIG. 47, in the secure
shared area 181 are stored the execution module identifier
“#2” and the switchover flag “Ij”, which were written during
the context modification notifying operation. Besides, the
module identifier “#1” and the context number “#m” are
stored as the switchover parameters in the secure shared area
181. In the switchover history area 118 of the module (#1) 710
is stored the caller address Addrl, while in the switchover
history area 128 of the module (#2) 720 is stored the module
identifier “#1” of the caller module. However, no information
is stored in the switchover history area of the module (#3)
730.

Once the module (#3) 730 goes into the sleep state (see
Step S905-5 illustrated in FIG. 43), the module running rights
are switched over to the OS 180. Then, because of the sched-
uler of the OS 180, the module running rights are transferred
to the module (#2) 720. With that, the module (#2) 720
resumes running. Upon resuming running, when the module
(#2) 720 receives a modification notification from the context
modification notifying unit 905B of the module (#3) 730, the
control is transferred to the context modification receiving
unit 907B.

The operations performed by the context modification
receiving unit 907B are identical to those explained with
reference to FIG. 44 according to the fourth embodiment.
Hence, the explanation thereof is not repeated. Lastly, the
context modification receiving unit 907B specifies the con-
text setting information included in the obtained switchover
parameters, and transfers the control to the context setting
unit 702B (see Step S907-5 illustrated in FIG. 44).

With reference to FIG. 48, at Step S707-1, the context
setting unit 702B determines that the module identifier
obtained from the switchover parameters, which are obtained
by the context modification receiving unit 907B, has the value
“#1” but the module identifier of the module (#2) 720 has the
value “#2”. Thus, the two values are not matching. As a result,
the system control proceeds to Step S707-4.

At Step S707-4, the context setting unit 702B returns the
context such as the stack of the module (#2) 720 to the state
attained immediately after the switchover. Then, the control is



US 9,116,741 B2

49

transferred to the context modification notifying unit 905B of
the module (#2) 720. The operations performed by the con-
text modification notifying unit 905B are identical to those
explained with reference to FIG. 43 according to the fourth
embodiment. Hence, the explanation thereof is not repeated.

Atthat point of time, as illustrated in FIG. 47, in the secure
shared area 181 are stored the execution module identifier
“#1” and the switchover flag “I j”, which were written during
the context modification notifying operation. Besides, the
module identifier “#1” and the context number “#m” are
stored as the switchover parameters in the secure shared area
181. In the switchover history area 118 of the module (#1) 710
is stored the caller address Addrl. However, no information is
stored in the switchover history areas of the module (#2) 720
and the module (#3) 730.

Once the module (#2) 720 goes into the sleep state (see
Step S905-5 illustrated in FIG. 43), the module running rights
are switched over to the OS 180. Then, because of the sched-
uler of the OS 180, the module running rights are transferred
to the module (#1) 710. With that, the module (¥#1) 710
resumes running. Upon resuming running, when the module
(#1) 710 receives a modification notification from the context
modification notifying unit 905B of the module (#2) 720, the
control is transferred to the context modification receiving
unit 907A.

The operations performed by the context modification
receiving unit 907A are identical to those explained with
reference to FIG. 44 according to the fourth embodiment.

Hence, the explanation thereof is not repeated. Lastly, the
context modification receiving unit 907A specifies the con-
text setting information included in the obtained switchover
parameters, and transfers the control to the context setting
unit 702A (see Step S907-5 illustrated in FIG. 44).

With reference to FIG. 48, the context setting unit 702A
determines whether or not the value of the module identifier,
which is included in the context setting information received
from the caller module via the secure shared area 181,
matches with the value of the module identifier indicating the
module (#1) 710. In this case, the value of the module iden-
tifier included in the context setting information has the value
“#1” and the module identifier of the module (#1) 710 has the
value “#1”. Thus, the two values are matching. As a result, the
context setting unit 702A can determine it to be necessary to
return to the point of time at which context registration was
issued in the module (#1) 710.

Then, the system control proceeds to Step S707-2. The
context setting unit 702A retrieves the context number from
the context setting information and obtains the context infor-
mation corresponding to that context number from the con-
text managing table 919. Subsequently, the context setting
unit 702A deletes that context information from the context
managing table 919. Then, at Step S707-3, the context setting
unit 702A overwrites the current context information in the
module (#1) 710 with the context information obtained at
Step S707-2, and returns to the location of context registra-
tion.

In this way, in the fifth embodiment, during context regis-
tration, in place of a context, a module identifier and a context
number are provided as the context setting information. Then,
during context setting, the module identifier and the context
number, which are included in the context setting information
provided during context registration, are specified so as to
enable returning to the caller modules in order. As a result,
even across the modules that hold separate contexts and that
are protected, it becomes possible to execute the functions
equivalent to the functions setjmp and longjmp.

10

30

40

45

50

50

Meanwhile, in the fifth embodiment, the context modifica-
tion notifying unit and the pre-switchover operation unit are
configured to be independent of each other. However, that is
not the only possible case. Alternatively, it is possible to
configure the pre-switchover operation unit to also have the
functions of the context modification notifying unit. That is,
in the pre-switchover operation unit, in the case of normal
calling, the normal pre-switchover operation is performed;
and in the case of context setting, the operations are per-
formed according to the functions of the context modification
notifying unit.

Similarly, in the fifth embodiment, the context modifica-
tion receiving unit and the post-switchover operation unit are
configured to be independent of each other. However, that is
not the only possible case. Alternatively, it is possible to
configure the post-switchover operation unit to also have the
functions of the context modification receiving unit. That is,
in the post-switchover operation unit, in the case of normal
calling, the normal pre-switchover operation is performed;
and in the case of context setting, the operations are per-
formed according to the functions of the context modification
receiving unit.

Moreover, in the fifth embodiment, it is explained that each
module independently holds a context managing table. How-
ever, that is not the only possible case. For example, in an
identical manner to the secure shared area, a context manag-
ing table can be maintained in an area shared by the modules
running cooperatively.

Furthermore, in the fifth embodiment, it is explained that a
set of context information is managed using a module iden-
tifier and a context number. However, that is not the only
possible case. That is, as long as module identifiers and con-
text numbers represent unique values used across the mod-
ules, it is also possible to implement a method in which two
different numbers are not used. For example, during the ini-
tialization operation, a method of using only the context num-
bers can be implemented. In that method, a range of the
context numbers to be used across the modules is determined,
and the module #1 is configured to use context numbers #1 to
#100 and the module #2 is configured to use context numbers
#101 to #200.

Alternatively, instead of determining the context numbers
for modules during the initialization operation, the context
numbers can be determined by making such adjustment that
the context number for each module does not clash with
another context number.

Other Applications of Embodiments

According to other applications of each embodiment
described above, in a program, a first operation step includes,
just prior to a switchover of operations from own module to
another module and when the reason for switchover is calling,
storing a caller address in a switchover history area; and a
second operation step includes, immediately after a switcho-
ver of operations from another module and when a switchover
flag indicates return from calling, obtaining the caller address
from the switchover history area and resuming execution
from that caller address.

Moreover, in the program, an initialization step includes
determining module identifiers according to task identifiers,
which are used by a microprocessor to identify modules.

Furthermore, in the program, the initialization step
includes determining module identifiers from random num-
bers and confirming that there is no duplication of identifiers
among modules that run cooperatively.



US 9,116,741 B2

51

Moreover, in the program, the first operation step includes,
just prior to a switchover from the own module to another
module, specifying a shared key, encrypting the switchover
flag as well as the switchover parameter with the specified
shared key, and storing the encoded switchover flag and the
encoded switchover parameter in a shared area; and the sec-
ond operation step includes, immediately after a switchover
from another module to the own module, specifying a shared
key, decrypting the switchover flag and the switchover
parameter that are stored in the shared area with the specified
shared key, and executing a function inside the own module
according to the decoded switchover flag and the decoded
switchover parameter.

Furthermore, the shared area and an access control unit,
which performs access control with respect to the shared area,
are disposed in the microprocessor; and the program accesses
the shared area via the access control unit.

Moreover, the access control unit, which performs access
control with respect to the shared area, runs in the micropro-
cessor and is disposed in a virtual machine monitor that runs
a plurality of modules cooperatively; and the program
accesses the shared area from the virtual machine monitor via
the access control unit.

According to an aspect of an embodiment, it becomes
possible to efficiently and reliably prevent changes from
being made in the execution sequence by a third party.

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the inventions.
Indeed, the novel embodiments described herein may be
embodied in a variety of other forms; furthermore, various
omissions, substitutions and changes in the form of the
embodiments described herein may be made without depart-
ing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such forms
or modifications as would fall within the scope and spirit of
the inventions.

What is claimed is:

1. A computer program product comprising a non-transi-
tory computer-readable storage medium including a program
embodied therein, which when executed by a computer,
causes the computer to have a plurality of modules including
a first module and a second module run by the computer,
wherein

the computer includes a memory having a shared area,

the shared area being an area accessible by only those
modules which run cooperatively, and storing therein
execution module identifiers which serve as identifi-
ers of modules running in an operation system (OS)
from among the modules which run cooperatively,
and

each of the modules include:

a first operation configured to store, just prior to a
switchover of operations to the second module that
runs cooperatively, an identifier of the second module
as the execution module identifier in the shared area;
and

a second operation configured to execute, when the
execution module identifier stored in the shared area
matches with an identifier of the first module imme-
diately after a switchover of operations from the sec-
ond module, a function inside the first module.

2. The computer program product according to claim 1,
wherein

the first operation further includes storing, in the shared

area, a switchover flag which indicates a reason for the

5

10

15

20

30

35

40

45

50

65

52

switchover, and a switchover parameter which contains
necessary information for the switchover, and
the second operation includes executing the function inside
the first module according to the switchover flag and the
switchover parameter stored in the shared area.
3. The computer program product according to claim 2,
wherein
the first operation includes storing, when the reason for the
switchover is calling, the switchover flag which indi-
cates the calling, and the switchover parameter which at
least contains calling information that indicates a calling
location inside the second module in which the switcho-
ver occurs due to the calling, in the shared area, and
the second operation includes executing, when the
switchover flag indicates the calling, a calling operation
inside the first module according to the calling informa-
tion included in the switchover parameter.
4. The computer program product according to claim 3,
wherein
the first operation includes storing, when the reason for the
switchover is returning from calling, the switchover flag
which indicates the returning, and the switchover
parameter which indicates returning-from-calling infor-
mation that indicates an execution result of the first
module in which the switchover occurred due to the
calling, in the shared area, and
the second operation includes resuming, when the switcho-
ver flag indicates the returning, execution for the first
module to return to the location of the calling according
to the returning-from-calling information included in
the switchover parameter.
5. The computer program product according to claim 4,
further including
a third operation configured to include storing, just prior to
the switchover of operations to the second module that
runs cooperatively and when the reason for the switcho-
ver is other than the calling or the returning, a switchover
flag which indicates a reason other than the calling or the
returning, and the switchover parameter which at least
contains switchover reason information indicating
details of the reason for the switchover, in the shared
area; and
a fourth operation configured to include executing, imme-
diately after the switchover of operations from the sec-
ond module and when the switchover flag indicates a
reason other than the calling or the returning, an opera-
tion corresponding to the reason indicated by the
switchover reason information included in the switcho-
ver parameter.
6. The computer program product according to claim 5,
wherein
the third operation includes storing, when the reason for the
switchover is a language exception, the switchover flag
which indicates the language exception, and the
switchover parameter which at least contains language
exception information that is required for notifying the
language exception, in the shared area, and
the fourth operation includes throwing, when the switcho-
ver flag indicates the language exception, a language
exception to the first module according to the language
exception information included in the switchover
parameter.
7. The computer program product according to claim 6,
further including
a context setting configured to include
obtaining, from a managing table that manages the iden-
tifier, a context number, each of which is unique to



US 9,116,741 B2

53

each of the contexts, and context information, each of
which represents each of the contexts in a correspond-
ing manner on a one-to-one basis, the context infor-
mation corresponding to the context number being
designated by the second module, and
overwriting a current context of the first module with the
obtained context information, wherein
the third operation includes
deleting, just prior to the switchover and when the rea-
son for the switchover is the context setting, the con-
text information corresponding to the identifier and
the context number from the managing table, and
storing the switchover flag which indicates the context
setting, and the switchover parameter which at least
contains a set of context setting information indicat-
ing a context that is set at the context setting, in the
shared area just prior to the switchover, and
the fourth operation includes
registering, immediately after the switchover as well as
when the switchover flag indicates the calling and
when the switchover parameter contains the context
setting information, the identifier indicating the sec-
ond module, the context number indicated by the sec-
ond module, and context information required for
returning to the first operation in the managing table,
and
transferring, when the switchover flag indicates the con-
text setting, a control to the context setting according
to the context setting information included in the
switchover parameter.
8. The computer program product according to claim 6,

further including

registering configured to include
registering, by a registering unit, context information in
amanaging table that manages the identifier, a context
number, each of the context numbers being unique to
each of the contexts, and the context information rep-
resenting the contexts in a corresponding manner on a
one-to-one basis, and
returning back the context number corresponding to the
context information; and
context setting configured to include
obtaining, when the identifier designated by the first
module matches with the identifier of the first module,
the context information corresponding to the context
number designated by the first module from the man-
aging table, and overwriting the context of the first
module with the obtained context information, and
overwriting, when the identifier designated by the first
module does not match with the identifier of the first
module, the context of the first module with the con-
text that is present just prior to performing the first
operation, wherein
the third operation includes storing, when the reason for the
switchover is context setting, the switchover flag, which
indicates context setting, and the switchover parameter,
which at least contains a set of context setting informa-
tion indicating a context that is set at the context setting,
in the shared area just prior to the switchover, and
the fourth operation includes transferring, when the
switchover flag indicates the context setting, control to
the context setting immediately after the switchover and
according to the context setting information included in
the switchover parameter.

5

10

15

20

25

30

35

40

45

50

55

60

65

54

9. The computer program product according to claim 2,

wherein

the shared area is further configured to store a switchover
source identifier that indicates a switchover source mod-
ule,
the first operation includes
storing, when the reason for the switchover is calling, the
identifier indicating the first module as the switchover
source identifier in the shared area just prior to the
switchover, and
obtaining, when the reason for the switchover is return-
ing from calling, the identifier indicating the switcho-
ver source module from a switchover history area that
holds information resulting from the switchover, and
storing the obtained identifier as the switchover
source identifier in the shared area, and
the second operation includes
obtaining, when the switchover flag is a value indicating
the calling, the switchover source identifier immedi-
ately after the switchover, and storing the obtained
switchover source identifier in the switchover history
area.
10. An information processing apparatus comprising:
aplurality of modules including a first module and a second
module; and
a memory having a shared area that is an area accessible by
only those modules from among the plurality of modules
which run cooperatively and that is used to store execu-
tion module identifiers which serve as identifiers of run-
ning modules from among the plurality of modules
which run cooperatively, wherein
each of the plurality of modules includes
a first operation unit that, just prior to a switchover of
operations to the second module that runs coopera-
tively, stores an identifier of the second module as the
execution module identifier in the shared area; and
a second operation unit that, when the execution module
identifier stored in the shared area matches with an
identifier of the first module immediately after a
switchover of operations from the second module,
executes a function inside the first module.
11. The apparatus according to claim 10, wherein
the first operation unit further stores, in the shared area, at
least a switchover flag which indicates a reason for the
switchover and a switchover parameter which contains
necessary information for the switchover, and
the second operation unit executes the function inside the
first module according to the switchover flag and the
switchover parameter stored in the shared area.
12. The apparatus according to claim 11, wherein
when the reason for the switchover is calling, the first
operation unit stores, in the shared area, the switchover
flag which indicates the calling and the switchover
parameter which at least contains calling information
that indicates a calling location inside the second mod-
ule in which the switchover occurs due to the calling, and
when the switchover flag indicates the calling, the second
operation unit executes a calling operation inside the
first module according to the calling information
included in the switchover parameter.
13. The apparatus according to claim 12, wherein
when the reason for the switchover is returning from call-
ing, the first operation unit stores, in the shared area, the
switchover flag which indicates the returning and the
switchover parameter which at least includes returning-
from-calling information that indicates an execution



US 9,116,741 B2

55

result of the first module in which the switchover
occurred due to the calling, and

when the switchover flag indicates the returning, the sec-

ond operation unit resumes execution for the first mod-
ule to return to the location of the calling according to the
returning-from-calling information included in the
switchover parameter.

14. The apparatus according to claim 13, further compris-
ing:

athird operation unit that stores, just prior to the switchover

of operations to the second module that runs coopera-
tively and when the reason for the switchover is other
than the calling or the returning, a switchover flag which
indicates a reason other than the calling or the returning
and the switchover parameter which at least contains
switchover reason information indicating the reason for
the switchover, in the shared area; and

a fourth operation unit that executes, immediately after the

switchover of operations from the second module and
when the switchover flag indicates a reason other than
the calling or the returning, an operation corresponding
to the reason indicated by the switchover reason infor-
mation included in the switchover parameter.

15. The apparatus according to claim 14, wherein

when the reason for the switchover is a language exception,

the third operation unit stores, in the shared area, the
switchover flag which indicates the language exception
and the switchover parameter which at least contains
language exception information that is required for noti-
fying the language exception, and

when the switchover flag indicates the language exception,

the fourth operation unit throws a language exception to
the first module according to the language exception
information included in the switchover parameter.

16. The apparatus according to claim 15, further compris-
ing a setting unit that obtains, from a managing table that
manages the identifier, a context number, each of which is
unique to each of the contexts, and context information, each
of which represents each of the contexts in a corresponding
manner on a one-to-one basis, the context information corre-
sponding to the context number being designated by the sec-
ond module, and that overwrites a current context of the first
module with the obtained context information, wherein

just prior to the switchover and when the reason for the

switchover is the context setting, the third operation unit
deletes the context information corresponding to the
identifier and the context number from the managing
table, and stores, in the shared area, the switchover flag
which indicates the context setting and the switchover
parameter which at least contains context setting infor-
mation indicating a context that is set by the setting unit,
and

immediately after the switchover as well as when the

switchover flag indicates the calling and when the
switchover parameter contains the context setting infor-
mation, the fourth operation unit registers the identifier
indicating the second module, the context number indi-
cated by the second module, and context information
required for returning to the first operation unit in the
managing table, and, when the switchover flag indicates
the context setting, the fourth operation unit transfers a
control to the context setting according to the context
setting information included in the switchover param-
eter.

10

15

20

25

30

35

40

45

50

55

65

56

17. The apparatus according to claim 15, further compris-

ing:

a registering unit that registers context information in a
managing table, which manages the identifier, a context
number, each of which is unique to each of the contexts,
and the context information, each of which represents
each of the contexts in a corresponding manner on a
one-to-one basis, and that returns back the context num-
ber corresponding to the context information; and

a setting unit that, when the identifier designated by the first
module matches with the identifier of the first module,
obtains the context information corresponding to the
context number designated by the first module from the
managing table and overwrites the context of the first
module with the obtained context information, and,
when the identifier designated by the first module does
not match with the identifier of the first module, over-
writes the context of the first module with the context
that is present just prior to performing operations of the
first operation unit, wherein

when the reason for the switchover is context setting, the
third operation unit stores, in the shared area just prior to
the switchover, the switchover flag which indicates con-
text setting and the switchover parameter which at least
contains context setting information indicating a context
that is set by the setting unit, and

when the switchover flag indicates the context setting, the
fourth operation unit transfers a control to the context
setting immediately after the switchover and according
to the context setting information included in the
switchover parameter.

18. The apparatus according to claim 11, wherein

the shared area is further configured to store a switchover
source identifier that indicates a switchover source mod-
ule,

when the reason for the switchover is calling, the first
operation unit stores the identifier indicating the first
module as the switchover source identifier in the shared
area just prior to the switchover and, when the reason for
the switchover is returning from calling, the first opera-
tion unit obtains the identifier, which indicates the
switchover source module from a switchover history
area that holds information resulting from the switcho-
ver, and stores the obtained identifier as the switchover
source identifier in the shared area, and

when the switchover flag is a value indicating the calling,
the second operation unit obtains the switchover source
identifier from the shared area immediately after the
switchover and stores the obtained switchover source
identifier in the switchover history area.

19. An information processing method that causes a com-

puter to execute a program having a plurality of modules
including a first module and a second module, wherein

the computer includes a memory having a shared area, the
shared area being an area accessible by only those mod-
ules which run cooperatively and storing therein execu-
tion module identifiers which serve as identifiers of
modules running in an operation system (OS) from
among the modules which run cooperatively, and
each of the modules includes
a first operation configured to store, just prior to a
switchover of operations to the second module that is
included in the modules which run cooperatively, an
identifier of the second module as the execution mod-
ule identifier in the shared area; and
a second operation configured to execute, when the
execution module identifier stored in the shared area



US 9,116,741 B2

57

matches with an identifier of the first module imme-
diately after a switchover of operations from the sec-
ond module, a function inside the first module.
20. The computer program product according to claim 1,
wherein
the second operation includes a determining operation to
determine whether the execution module identifier
stored in the shared area matches with the identifier of
the first module immediately after the switchover of
operations from the second module; and
the second operation executes, when the execution module
identifier is determined to match with the identifier of
the first module at the determining operation, the func-
tion inside the first module.

#* #* #* #* #*

10

15

58



